NOTE: The following description and operation is based on this device and its components being new or this device and its components having been repaired, tested, installed and maintained in accordance with instructions issued by this and any other applicable Wabtec Corporation publications.

⚠️ WARNING: At the time any part is replaced in this device, the operation of the complete device must pass a series of tests prescribed in the latest issue of the applicable Wabtec Test Specification. At the time this device is applied to the brake equipment arrangement, a stationary vehicle test must be made to insure that this device functions properly in the total brake equipment arrangement. (Consult your local Wabtec Corporation Representative for identity of the test specification, with latest revision date, that covers this device.)

IMPORTANT: Only Wabtec Corporation supplied parts are to be used in the repair of this device in order to obtain satisfactory operation. Commercially available non-O.E.M. parts are unacceptable.

NOTE: The part numbers and their associated descriptions are the property of Wabtec Corporation and may not be replicated in any manner or form without the prior sole written consent of an Officer of Wabtec Corporation.

© 2017 WABCO Locomotive Products A Wabtec Corporation. All rights reserved
Table of Contents

1.0 PREFACE .. 4
 1.1 General Description ... 4
 1.2 3-CD Type Air Compressor ... 4
 1.3 “3-CD” Type Exhausters and Combination Compressor-Exhauster 4

2.0 DESCRIPTION OF COMPONENT PARTS ... 6
 2.1 Cylinders ... 6
 2.2 Cylinder Heads and Valves ... 6
 2.3 Crankshaft and Connecting Rods ... 6
 2.4 Compressor Pistons .. 6
 2.5 Vacuum Pistons .. 6
 2.6 Cooling Fan ... 6
 2.7 Main Bearing .. 6
 2.8 Oil Pumps .. 6
 2.9 Oil Pressure Indicator ... 8
 2.10 Oil Level Gage - Float Type .. 8
 2.11 Oil Level Gage - Dipstick Assembly .. 8
 2.12 Crankcase Breather Valve ... 8
 2.13 Vacuum Maintaining Valve .. 8
 2.14 Exhaust Breather Valve ... 9
 2.15 Intercooler and Safety Valves ... 9
 2.16 Thermostatically Controlled Intercooler System (TCIS) ... 9
 2.17 High Temperature Indicator .. 9
 2.18 Aftercooler ... 10
 2.19 Aftercooler Safety Switch ... 10
 2.20 Oil Level Switch ... 10

3.0 OPERATION .. 10
 3.1 “3-CD” Type Compressor ... 10
 3.2 “3-CD” Type Exhauster ... 10

4.0 DESIGNATIONS - COMPRESSORS .. 11
 “3-CD” TYPE COMPRESSORS ... 11
 4.1 First Symbol ... 11
 4.2 Second Symbol .. 11
 4.3 Third Symbol .. 11
 4.4 Fourth Symbol .. 11
 4.5 Fifth Symbol .. 11
 4.6 Sixth Symbol .. 11
 4.7 Seventh Symbol .. 11

5.0 DESIGNATIONS: 3-CD TYPE COMPRESSOR ... 11
 5.1 First Main Part .. 11
 5.2 Second Main Part .. 11

6.0 SERIALIZATION .. 11

7.0 GENERAL SPECIFICATIONS .. 12
 7.1 “3-CD” Type Compressors ... 12

8.0 SAFETY PROCEDURES AND WARNINGS ... 12

9.0 CLEANING SOLVENTS AND LUBRICANTS .. 12
 9.1 Cleaning solvents ... 12
 9.2 Lubricants .. 13

10.0 PARTS CATALOG and REPLACEMENT PARTS .. 13
 10.1 Parts Catalog ... 13
 10.2 Replacement Parts ... 13

11.0 MAINTENANCE SCHEDULE .. 14

12.0 REMOVING THE COMPRESSOR OR EXHAUSTER FROM THE LOCOMOTIVE 15

February, 2017
13.0 REPAIR PROCEDURE - “IN SHOP” ... 15
13.1 Exterior Surfaces .. 15
13.2 Removal of Drive Motor ... 15
13.3 Compressor Crankshaft Coupling Half .. 15
13.4 Cooling Fan ... 15
13.5 Exterior Details .. 15
13.6 Cylinder Assembly ... 15
13.7 Crankshaft Disassembly ... 16

14.0 CLEANING, INSPECTION and REPAIRING .. 16
14.1 Cleaning .. 16
14.2 Condensing Limits ... 17
14.3 Cylinders and Pistons ... 17
14.4 Piston Rings ... 18
14.5 Crankcase .. 18
14.6 Main Bearing Housing ... 20
14.7 Crankshaft ... 20
14.8 Forged Steel Crankshafts .. 22
14.9 Ductile Iron Crankshafts .. 22
14.10 Connecting Rods .. 23
14.11 Connecting Rod Wrist Pin Bushing Replacement .. 23
14.12 Procedure for Checking Alignment of Connecting Rod ... 23
14.13 Connecting Rod to Crankpin Fit .. 23
14.14 Oil Pump - Cartridge Style .. 27
14.15 Oil Pressure Indicator .. 28
14.16 Oil Level Gauge - Float Type ... 28
14.17 Main Bearings .. 28
14.18 Cylinder Heads and Valves .. 30
14.19 Unloader .. 30
14.20 Intercoolers - (Copper Finned Tube Type) .. 30
14.21 Aluminum Aftercoolers ... 33
14.22 Safety Valves .. 33
14.23 Crankcase Breather .. 33
14.24 Exhauster Breather Valve and Filter ... 33
14.25 Crankcase Vacuum Maintaining Valve .. 33
14.26 Torque Values ... 35

15.0 ASSEMBLY .. 35
15.1 Crankshaft Installation .. 35
15.2 Crankshaft Oil Seals ... 35
15.3 Cylinders and Piston Assembly .. 37
15.4 Cylinder Head Assembly ... 37

16.0 OIL PUMP CARTRIDGE ASSEMBLY and SIDE COVERS .. 37

17.0 INTERCOOLER, AFTERCOOLER AND FAN ASSEMBLY ... 38
17.1 Installation of Aftercooler Assembly .. 38
17.2 Installation of Aftercooled Compressor Intercooler Components ... 38
17.3 Thermostatically Controlled Intercooler Assembly .. 38
17.4 One Piece Intercooler Assembly ... 39
17.5 Installation of Aftercooler Components .. 39
17.6 Installation of High Pressure Discharge Pipe .. 39
17.7 Installation of By-Pass Aftercooler .. 39
17.8 Fan Hub Fitting .. 40
17.9 Fan Hub Mounting with Hydraulic Removal Feature .. 40
17.10 Installation of Fan Assembly .. 40
17.11 Fans with One Piece Molded Fans ... 40
17.12 Installation of Drive Motor .. 40

18.0 WEAR-IN and TESTS .. 41

19.0 COMPRESSOR CAPACITY TEST ... 42

20.0 INSTALLATION AND ALIGNMENT OF COMPRESSOR WITH DIESEL ENGINE ... 42

21.0 INSTALLATION of MOTOR DRIVEN COMPRESSOR .. 42

22.0 PREPARATION of COMPRESSORS for DEAD STORAGE .. 42

TABLES & TROUBLESHOOTING GUIDE ... 44
1.0 PREFACE

IMPORTANT: The equipment and/or devices covered in this publication that were manufactured and/or sold by the Wabtec Corporation were designed and constructed to perform in the manner stated herein. Proper installation, periodic inspection, testing, and routine specified maintenance of all operating parts in accordance with instructions issued by this and any other applicable Wabtec Corporation publications must be adhered to. Wabtec Corporation parts must be used during overhaul or routine maintenance to assure proper operation of equipment and/or devices. No responsibility for the workmanship associated with the maintenance of devices will be accepted if the work is done by a repair center that is not operated by the Wabtec Corporation.

NOTE: The following equipment description and the description of equipment operation is based on the equipment and all component devices being new or having been repaired, tested, installed and maintained in accordance with instructions and specifications issued by the Wabtec Corporation.

Instructions contained in this publication are presented as a guide for maintenance and repair shop conditioning following the removal of the specific device from the locomotive.

IMPORTANT: The Wabtec Corporation is constantly improving its product line and researching and developing new products. Changes in design and function of devices and/or equipment may result from this research and development, therefore, the material in this publication is subject to change without notice.

1.1 General Description

NOTE: The terms Compressor, Exhauster, and Combination Compressor-Exhauster may be used interchangeably when describing similar components in this publication.

1.2 3-CD TYPE AIR COMPRESSOR
Reference Figures 1, 2 and 3

The “3-CD” Type Air Compressor is a two stage, three cylinder “W” configuration, single acting air compressor. It is designed for application to locomotives for the purpose of providing compressed air. The “3-CD” Type Air Compressor may be driven directly off the locomotive’s diesel engine through appropriate couplings and driveshaft or belt driven by an electric motor.

Recent compressor designs are driven by a directly coupled electric motor that can be separated from the compressor for replacement or maintenance purposes. The compressor is designed for operation at a maximum discharge pressure of 140 psig (965 kPa). The compressor has a stroke of 4.125” (104.77 mm) or 5.625” (142.87 mm), depending on the type of compressor. See Section 4.0 for designations and the capacities and weights are covered under Section 7.0 - General Specifications. Contact your Wabtec Corporation Representative or the Wabtec Corporation Compressor Engineering Department for any additional information.

1.3 “3-CD” TYPE EXHAUSTERS AND COMBINATION COMPRESSOR-EXHAUSTER
Reference Figure 4

The “3-CD” Type Exhausters and Combination “3-CD” Type Compressor-Exhausters are similar in design to a Compressor except for the absence of: the unloaders on the vacuum cylinder inlet valves, intercooler, and breather valve. Vacuum pistons are now used exclusively in vacuum cylinders.

A compressor-exhauster breather valve and air inlet filter is used to control the vacuum in the crankcase. Compressor-Exhausters built prior to 1989 utilized standard compressor pistons and a vacuum maintaining valve to control the vacuum in the crankcase. The compressor portion provided on the combination Compressor-Exhausters is a single stage air compressor that provides compressed air.

The straight exhauster has all vacuum cylinders and vacuum pistons. The vacuum cylinder heads are normally manifolded together and provide the vacuum required for vacuum brake operation.

NOTE: The GENERAL SPECIFICATIONS and POWER REQUIREMENTS for the “3-CD” Type Compressors, Exhausters, and Combination Compressor-Exhausters are covered in Section 7.0 of this manual.
2.0 DESCRIPTION OF COMPONENT PARTS

2.1 CYLINDERS

The “3-CD” Type Air Compressor has two 7.75” (196.85 mm) diameter low pressure cylinders and one 5.5” (139.7 mm) diameter high pressure cylinder.

The Combination “3-CD” Compressor - Exhauster normally has two 7.75” (196.85 mm) diameter Vacuum Cylinders and one 5.5” (139.7 mm) diameter compression cylinder.

The “3-CD” Type Exhauster has two 7.75” (196.85 mm) diameter Vacuum Cylinders and one 5.5” (139.7 mm) diameter vacuum cylinder.

2.2 CYLINDER HEADS and VALVES

“3-CD” Type Compressors, Exhausters and Combination Compressor-Exhausters may be equipped with two, three or four valve heads. The latest compressors and exhausters use the four valve heads. The original valves were disc type that operated against hellically wound springs. The latest valves are plate type valves that operate against lentoid springs for longer life.

Unloaders are provided on the inlet valves of compressor cylinder heads to unload the compressor whenever a set main reservoir pressure is reached and not to exceed 140 psig (965 kPa).

NOTE: “Cut-In” pressure should be set at 10 to 15 psig less than the “Cut-Out” pressure.

Old standard inlet valves were unloaded by an unloader plunger with pins. Present standard inlet valves contain an integrated unloader that is actuated by the unloader valve via a heavy spring.

2.3 CRANKSHAFT and CONNECTING RODS

Crankshafts and connecting rods were originally made of forged steel. The steel crankshafts can be identified by the word “PARK” forged into the crankshaft.

The present standard crankshafts and connecting rods are made of ductile iron.

The connecting rods are fitted with replaceable bearing inserts and wrist pin bushing.

2.4 COMPRESSOR PISTONS

The low pressure trunk type pistons of the compressor portion are elliptical ground aluminum. Each piston has two oil and two compression rings. The high pressure piston is cast iron and also utilizes two oil and two compression rings. The latest design cast iron high pressure piston utilizes teflon layered wrist pin bushings for improved life.

2.5 VACUUM PISTONS

The vacuum pistons differ in design from the compressor pistons. This patented piston has oil retrieval holes added to the compression ring grooves. The pistons are marked on the top with the Part Number and “For Vacuum Use Only”.

NOTE: It is important that these pistons be used only as vacuum pistons in vacuum cylinders of Exhausters and Combination Compressor-Exhausters.

2.6 COOLING FAN

Compressor cooling is normally provided by a compressor crankshaft mounted cooling fan that maintains air flow across the compressor portion, intercooler and aftercooler if so equipped.

2.7 MAIN BEARING

Two main bearings are utilized in the compressor assembly. The diesel engine driven compressor contains two conrad style ball bearings; whereas the direct electric motor driven compressor uses one conrad style ball bearing and one spherical roller type bearing on the motor end of the compressor. The “main bearings” of the compressor are “splash” lubricated by crankcase oil during compressor operation.

2.8 OIL PUMPS

Lubrication for 3CD type air compressors, combination compressor-exhausters and straight exhausters is provided by a fixed displacement reciprocating plunger type oil pump which is driven off an eccentric on the compressor crankshaft.

All valves of the oil pump are located in an easy replaceable cartridge.

The cartridge houses an oil pump inlet valve, discharge valve and oil pressure relief valve.

The older “3-CD” Type Air Compressors, Exhausters, and Combination Compressor-Exhausters utilize a uniflow style oil pump plunger assembly that is driven off an eccentric on the compressor crankshaft. The oil pressure relief valve used with the uniflow type oil pump is located in the crankshaft.
NOTE: Valve plugs are to be assembled with a tightening torque of 300 ft.lb.

Figure 5 - High Pressure Compressor Head

Figure 6 - Oil Pumps 3CD Type Air Compressor

Former Standard Cartridge Type Oil Pump

Intermediate Standard Cartridge Type Oil Pump

Present Standard Cartridge Type Oil Pump

Oil Pump Cartridge Kit Pc. No. 566790 may be used only with oil Pump Body Pc. No. 566792
2.9 OIL PRESSURE INDICATOR

The Oil Pressure Indicator provides visual evidence when sufficient oil pressure is present for safe operation, the piston stem extends approximately 3/4" (19.05 mm) beyond the cap nut. It features a piston with o-ring design for simplified maintenance and improved reliability and replaces the old standard oil pulsation dampener.

2.10 OIL LEVEL GAGE - FLOAT TYPE

The Float Type Oil Gage provides a leak resistant means to measure the approximate oil level in the crankcase. The Float Type Oil Gage consists of a ball or float which rests in the oil supply. The vertical displacement of this float, as determined by the oil level in the crankcase, rotates (through a gear mechanism) a shaft which runs into the gage. A permanent magnet is attached to the gage end of the shaft. This magnet controls the pointer on the visible side of the gage. The magnet arrangement is used to insure that there is no physical opening from the atmosphere to the inside of the crankcase.

2.11 OIL LEVEL GAGE - DIPSTICK ASSEMBLY (NEW STYLE)

The New Style Dipstick Type Oil Level Gage Assembly, when properly installed, is designed to permit oil level in the compressor crankcase to be checked with the compressor running or shut down. No spillage of lubrication oil should occur when an oil level reading is taken.

The dipstick assembly consists of a spring loaded ball check, which is pushed off its seat when the dipstick gage is properly screwed into the dip stick tube to its normal, fully closed, position. This allows the crankcase oil to reach its level within the dip stick tube. When the dip stick gage is removed to take an oil level reading, the ball check seats on the bottom of the tube restricting any oil spilling when the compressor is running.

The dip stick assembly is so designed that no surge of oil should occur within the tube. A positive indication of the oil level is shown on the dipstick gage even when the compressor is operating.

2.12 CRANKCASE BREATHER VALVE

Reference Figure 7

The Crankcase Breather Valve operates as a check valve to provide a partial crankcase vacuum during normal operation of the compressor and to discharge air displaced in the crankcase during the compressor process. The breather valve consists of a body, breather valve, and metallic filter material.

2.13 VACUUM MAINTAINING VALVE

Reference Figure 8

A Vacuum Maintaining Valve, located on the top of the crankcase of “3-CD” Type Combination Compressor-Exhausters is used to maintain a partial vacuum in the crankcase, (17 - 18 inches Hg).

Atmospheric pressure acts on the top side of the valve piston against a spring in opposition to the force exerted on the piston by the vacuum in the crankcase causing a net force against the piston equaling atmospheric pressure. During normal operation of the exhauster the Vacuum Maintaining Valve performs no function.

Loss of vacuum in the crankcase disturbs the balance permitting the valve spring to force the piston up exposing the evacuation tube connection to the intake manifold. This results in the evacuation of air from the crankcase until the desired degree of vacuum is obtained. At this point, the Vacuum Maintaining Valve piston returns to its original position cutting off the evacuation tube connection to the exhauster intake manifold.
The vacuum maintained in the crankcase is set by the addition or removal of shims from beneath the Vacuum Maintaining Valve piston. Shims 1/16", 1/32" and 1/64" may be added to increase crankcase vacuum and removed to decrease the crankcase vacuum.

Compressor-exhausters or straight exhausters built with vacuum pistons eliminates the vacuum maintaining valve in favor of the exhauster breather valve and filter

A Drain Valve is provided at the bottom of each intercooler core for drainage of condensate.

A Relief Valve set at 60 psig (413.7 kPa) is mounted on the intercooler for the purpose of limiting pressure buildup in the intercooler. The 60 psig pressure setting is used on compressors not equipped with TCIS. On compressors equipped with Thermostatically Controlled Intercooler System (TCIS) the relief valve is set at 75 psig (515 kPa).

WARNING: It is important that the Relief Valve be maintained in good working order and that the pressure setting is such that the Relief Valve will provide pressure relief if and when the intercooler pressure exceeds 60 psig or 75 psig in the case of the TCIS. Failure to comply with this warning may result in serious injury to workmen and/or bystanders.

2.16 THERMOSTATICALLY CONTROLLED INTERCOOLER SYSTEM (TCIS)

The TCIS regulates the inter-stage compressed air temperature in order to prevent water condensation in the intercooler. At start-up when the compressor is cold, the L.P. discharge air is routed directly into the H.P. cylinder. In this case, the air is bypassing the intercooler. When the air compressor begins to warm up, the thermostat will begin to open and mix the bypass air with cool air from the intercooler thus regulating the H.P. inlet temperature to approximately 195° F. The A-1 intercooler relief valve is set at 75 psig nominal for the TCIS equipped compressor.

A rapid unloader valve with heater is applied to the TCIS intercooler system to rapidly exhaust the compressed air in the intercooler. The rapid depressurization of air will ensure that the compressor will start unloaded thus preventing the electric drive motor from attempting to start under load (prevents motor overheating). The heater functions to prevent freezing of the rapid unloader during cold weather operation.

2.17 HIGH TEMPERATURE INDICATOR

The high temperature indicator is located on the H.P. inlet manifold on the TCIS equipped air compressors. During normal operation, the indicator stem stays inside the body of the indicator. If the indicator tip experiences a high temperature, the indicator stem will extend out from the indicator body. A high temperature indication is representative of a malfunctioning thermostat. Both the thermostat, its associated o-ring, seal and the high temperature indicator should be replaced.
2.18 AFTERCOOLER

WABCO 3CDC Type Air Compressors may be equipped with a patented integral aftercooler that reduces the temperature of the compressed air to near ambient temperatures. Compressors not so equipped can be modified to include the integral aftercoolers. Consult your local Wabtec Corporation representative for additional information.

Aftercoolers equipped with a bypass pipe provide additional protection in during cold temperature operation. The high pressure discharge header has a built in orifice that interfaces with the aftercooler bypass pipe. In the event of a restriction in the aftercooler caused by frozen condensate, the high pressure discharge air is directed through the orifice to the aftercooler discharge and into the pipe connection to the No. 1 main reservoir.

2.19 AFTERCOOLER SAFETY VALVE

This safety valve is located on the aftercooler or high pressure discharge manifold on the aftercooler equipped with aftercooler bypass pipe feature. A safety valve set at 180 psig (1241 kPa) is intended to protect the aftercooler from excessive pressure buildup.

WARNING: It is important that the safety valve be maintained in good working order and that the pressure setting is such that the safety valve will provide pressure relief if and when the aftercooler pressure exceeds 180 psig (1241 kPa). Failure to comply with this warning may result in serious injury to workmen and/or bystanders.

2.20 OIL LEVEL SWITCH

A Oil Level Switch has been used on small crankcase compressors where oil capacity is 13 quarts. The Oil Level Switch is used to detect a low oil level condition and signal an alarm condition.

3.0 OPERATION

3.1 “3-CD” TYPE COMPRESSOR

IMPORTANT: The two low pressure cylinder heads when bolted to the larger of the three cylinders are to be fitted with WABCO approved air intake filters mounted in the recommended position on the intake flanges.

Each low pressure cylinder discharges into the intercooler system which discharges into a manifold to supply air to the high pressure cylinder for the second stage of compression. On the downstroke of the low pressure piston, air passes through the air intake filter from atmosphere into the chamber above the two inlet valves in the cylinder head. Partial vacuum created in the cylinder underneath the valve plates, by the downward stroke of the piston, permits atmospheric pressure above the inlet valves to overcome the resistance of a valve spring under the valve plates and forces the valve plate from its seat. Air then flows into the cylinder until the pressure above and below the valve plates are about equal, then the inlet valve is closed by its spring.

On the upward stroke of the low pressure piston, the air is compressed sufficiently to lift the discharge valves against the resistance of both the springs and intercooler pressure. The compressed air then passes through the discharge valve into the intercooler where it is cooled before it flows into the inlet side of the high pressure cylinder head.

The discharge valves are closed by their respective springs when the pressure above the valve becomes equal to pressure underneath.

The cycle of operation described for each low pressure cylinder is repeated in the high pressure cylinder. In this way, the intermediate intercooler pressure is raised to the second stage level which is slightly greater than main reservoir pressure. This main reservoir pressure IS NOT TO exceed 140 psig (965 kPa).

The compressor operates “loaded” until the buildup of main reservoir pressure increases to the cutout pressure setting of the compressor control switch or governor which may or may not be supplied by WABCO. This setting should normally be 140 psig (965 kPa). At this point the compressor control switch or governor should function to direct air to the unloader line and unloaders.

Air requirements then reduce the main reservoir pressure to the cut-in pressure setting of the compressor control switch or governor and the cycle is again repeated. The cut-in pressure setting should be normally 130 psig (897 kPa).

NOTE: “Cut-In” pressure should be at least 10 to 15 psig (68.96 - 103 kPa) less than the “Cut-Out” pressure.

Air displaced in the crankcase during compression processes is discharged by way of the crankcase breather which provides a partial crankcase vacuum during normal operation.

3.2 “3-CD” TYPE EXHAUSTERS

The operation of the exhausters is similar to that of the compressor, as described above, except for the operating pressure level of the exhauster.
4.0 DESIGNATIONS - COMPRESSORS
“3-CD” TYPE COMPRESSORS

4.1 FIRST SYMBOL
A number indicating the number of cylinders.

4.2 SECOND SYMBOL
The letter “C” indicates a compound compressor.

4.3 THIRD SYMBOL
“D” = Direct Drive
“B” = Belt Drive
“W” = Water Cooled
“M” = Motor Driven with WABCO Installed Drive Motor

4.4 FOURTH SYMBOL
If a letter “C” is used here, it will indicate a compressor with the shortened stroke, $4\frac{1}{8}''$ (104.775 mm) versus $5\frac{5}{8}''$ (142.875 mm).

If one of the letters under the third symbol is used here, it will retain the same meaning (except the “3-CDB” where “B” = cooling fan).

4.5 FIFTH SYMBOL
If a letter “L” is used here, it will indicate a compressor with a large oil capacity crankcase (65 quarts - 61.5 liters).

If the “X” is used, it will denote the absence of the compressor crankshaft cooling fan as in “3-CDCUX” Compressor-Exhauster.

4.6 SIXTH SYMBOL
If a letter “L” is used here, it will indicate a compressor with a large oil capacity crankcase (65 quarts - 61.5 liters).

If a letter “B” is used here, it will indicate a compressor with a cooling fan as in “3CMDCBL”.

If a letter “A” is used here, it will indicate a compressor with an integral aftercooler as in “3CDCLA”.

4.7 SEVENTH SYMBOL
If a letter “L” is used here, it will indicate a compressor with a large oil capacity crankcase (65 quarts - 61.5 liters).

If a letter “T” is used here, it will indicate a Thermostatically Controlled Intercooler System, as in the “3CDCLAT”.

5.0 DESIGNATIONS: 3-CD TYPE COMPRESSOR EXHAUSTERS & 3-CD TYPE EXHAUSTERS

5.1 FIRST MAIN PART
The number 3 and letters CD are used to designate the type of compressor being used as a vacuum exhauster or combined air compressor and vacuum exhauster. The number 3 indicates three cylinders, but the letters “C” and “D” do not necessarily indicate compound and direct drive.

If the letter “C” follows the letter “D”, it will indicate the exhauster or combination compressor exhauster with a shortened stroke $4\frac{1}{8}''$ (104.775 mm) versus $5\frac{5}{8}''$ (142.875 mm).

5.2 SECOND MAIN PART
“V” = Exhauster
“U” = Combination Compressor-Exhauster

If the letter “L” is used in the designation, it will indicate an Exhauster or Combination Compressor-Exhauster with a large oil capacity crankcase (65 quarts - 61.6 liters).

If the “X” is used, it will denote the absence of the compressor crankshaft cooling fan as in “3-CDCUX” Compressor-Exhauster.

6.0 SERIALIZATION
Older “CD” Type Compressors were first serialized by consecutive numbers.

“CD” Type Compressors were later serialized as to the quarter of year, the year and number (sequence) of compressor built.

Example: D-76-44; indicates that this compressor was built in the fourth quarter of 1976 and was the forty-fourth compressor built in that week.

“CD” Type Compressors built after January 1, 1977 are serialized according to the week, year and number of compressors built in that week.

Example: 05 77 18; This compressor was built in the fifth week of 1977 and was the eighteenth compressor assembled during the fifth week.
7.0GENERAL SPECIFICATIONS

7.1 "3-CD" TYPE COMPRESSORS
Reference Table A on pages 46 & 47

8.0 SAFETY PROCEDURES AND WARNINGS

Regular operating property and/or shop safety procedures must be followed when performing any work on a "3-CD" Type Compressor, Exhauster, or Combination Compressor-Exhauster.

The work area should be clean.

WARNING: Extreme care must be taken when handling this device and its components and while performing the many tasks associated with its repair. It is of utmost importance that the workman read, understand and comply with the appropriate warnings listed below during maintenance procedure.

The use of an air jet, which must be less than 30 psig, to blow parts clean or to blow them dry after being cleaned with a solvent will cause particles of dirt and/or droplets of the cleaning solvent to be airborne. These conditions may cause skin and/or eye irritation.

When using an air jet do not direct it toward another person. Improper use of air jet could result in bodily injury.

Personal eye protection must be worn when performing any work on this device or its component parts to avoid any possible injury to the eyes.

The use of solvents as cleaning agents and the use of lubricants can involve health and/or safety hazards. The manufacturers of the solvents and lubricants should be contacted for safety data (such as OSHA Form OSHA-20 or its equivalent). The recommended precautions and procedures of the manufacturers should be followed.

When performing any test or work on devices or equipment while they are on the vehicle, special precautions must be taken to insure that vehicle movement will not occur which could result in injury to personnel and/or damage to equipment.

Assembly may be under a spring load, Exercise caution during disassembly so that no parts “Fly Out” and cause bodily injury.

All air supply and/or electric current to this device and/or to any components part must be cut-off before this device and/or any component part is removed from the equipment arrangement.

"Bottled" up air under pressure (even though air supply is cut-off) may cause gaskets and/or particles of dirt to become airborne and an increase in sound level when this device and/or any component part is removed from the equipment arrangement.

Personal eye and ear protection must be worn and care taken to avoid possible injury when performing any work on this device and/or component part.

When performing work where high temperature is involved, use insulated gloves.

To prevent receiving electrical shock when performing electrical test, hands must be clear of electrical components, contacts and housing and required “in-lab” grounding procedures must be strictly adhered to. A wooden work bench should be used. Failure to heed this WARNING could result in severe injury or death.

An adequate support or lifting device must be available to support the complete unit or its major components during removal, installation and maintenance procedures. Observe weight information stated throughout this repair procedure.

9.0 CLEANING SOLVENTS AND LUBRICANTS

9.1 Cleaning solvents

The solvent used to clean specified reusable metal parts MUST BE an aliphatic organic solution, such as mineral spirits that will dissolve oil or grease, and that will permit the parts to be cleaned without abrasion.

Alkaline cleaners may be used to clean aluminum type intercoolers, aftercoolers, and low pressure aluminum pistons.

IMPORTANT: No caustic cleaners are to be used on aluminum intercooler and aftercooler cores and aluminum pistons.
9.2 LUBRICANTS

NOTE: The following lubricants are required when working on the “3-CD” Type Compressors, “3-CD” Type Combined Compressor-Exhausters and the “3-CD” Type Exhausters.

Heavy duty, high-temperature antisieze thread compound, Wabtec Corporation Specification AS-7499-40, such as LOCTITE #767 compound.

Compressor Oil for Heavy Duty Compressors, for operations at ambient temperatures below +10° F (-12° C) ATSM Viscosity Grade Number SUS @ +10° F = 215 (ISO V.G. 46). Wabtec Corporation Specification M-7615-20. This oil shall be a high quality, solvent refined, paraffin base or suitable blend. Additives to inhibit foaming, rust, oxidation, and wear are required. DETERGENTS ARE NOT PERMISSIBLE. Anti-wear additives are recommended.

Compressor Oil for Heavy Duty Compressors, for operation at or above ambient temperature above +10° F (-12° C) ATSM Viscosity Grade Number SUS @ +10° F = 315 (ISO V.G. 68). Wabtec Corporation Specification M-7616-20. This oil shall be a high quality, solvent refined, paraffin base or suitable blend. Additives to inhibit foaming, rust, oxidation, and wear are required. DETERGENTS ARE NOT PERMISSIBLE. Anti-wear additives are recommended.

Compressor Oil for Heavy Duty Compressors, for high ambient temperatures operations at or above +125° F (52° C) ATSM Viscosity Grade Number SUS @ 100° F = 465 (ISO V.G. 100). Wabtec Corporation Specification M-7617. This oil shall be a high quality, solvent refined, paraffin base or suitable blend. Additives to inhibit foaming, rust, oxidation, and wear are required. DETERGENTS ARE NOT PERMISSIBLE. Anti-wear additives are recommended.

Mixing of compressor oil grades or manufacture are to be avoided.

10.0 PARTS CATALOG and REPLACEMENT PARTS

10.1 PARTS CATALOG

Current Parts Catalogs for each specific “3-CD” Type Compressor, “3-CD” Type Combination Compressor-Exhauster, and “3-CD” Type Exhauster may be obtained through your Wabtec Corporation Representative or by writing to the:

Wabtec Corporation
c/o Locomotive Product Sales Department
1001 Air Brake Ave.
Wilmerding, PA 15148-0001 USA

The Part Number and the Description Name of the particular Compressor, Compressor-Exhauster, or Exhauster MUST BE furnished when requesting a Parts Catalog.

Contents of the Parts Catalogs are subject to change, and it is the responsibility of the owner of the Compressor, Compressor-Exhauster, or Exhauster to obtain the current Parts Catalog.

10.2 REPLACEMENT PARTS

IMPORTANT: To obtain satisfactory operation of a “3-CD” Type Compressor, a “3-CD” Type Combination Compressor-Exhauster, or a “3-CD” Type Exhauster and/or any of their components parts, ONLY replacement parts which are supplied by, or parts which are recommended in writing by the Wabtec Corporation are to be used in the maintenance of the particular device.

Replacement part numbers used in this publication cover parts which are available from Wabtec Corporation

When ordering replacement parts, give part number and descriptive part name to be sure that the desired parts is ordered.

Consult with your Wabtec Corporation Representative if any additional information is required on replacement parts.

Parts Catalogs are also available on the Wabtec Corporation web site (www.wabtec.com) by going directly to the "Technical Information" page.
11.0 MAINTENANCE SCHEDULE

WARNING: It is recommended that the procedures listed in this maintenance schedule be performed at least once during the specified time period, or more frequently if service conditions so indicate. Failure to perform the procedures at the specified time period may result in damage to equipment which could possibly cause a malfunction that may result in property damage and/or bodily injury. Shorter maintenance intervals may be found necessary, depending on the severity of the service to which the compressor is subjected. **IT IS THE USER’S responsibility to determine if more frequent schedules for maintenance are required.**

EVERY 30 DAYS (Small crankcase equipped compressors)
- Check small crankcase oil and if necessary, add oil.

EVERY 3 MONTHS (Large crankcase equipped compressors)
- Check large crankcase oil and if necessary, add oil.

EVERY 6 MONTHS
- Check operation of Unloaders and Rapid Unloader (Purge Valve) if so equipped.
- Check exterior of Intercooler Assembly. Clean.
- Check exterior of Aftercooler Assembly if so equipped. Clean.
- Inspect, remove and blow clean and, if necessary, replace the Compressor Intake Filters.
- Replace Exhauster Breather Inlet Air Filter if so equipped.

EVERY 12 MONTHS
- Change crankcase oil (Refer to Section 9.2). Clean interior of crankcase using a natural sponge and mineral spirits. After cleaning, dry the crankcase completely.
- Clean Oil Pump Strainer, Replace if necessary (Pc. No. 517747).
- Replace Compressor Intake Filters.
- Replace Exhauster Breather Inlet Air Filter, if so equipped.
- Check the operation of the Purge Valve Heater on TCIS equipped compressors. The heater has a built in thermostat to activate the heater. Subject the heater to a temperature of less than 45° F to turn the heater “ON”. At a location on the purge valve close to the heater - feel the purge valve for warmth. Replace heater if necessary.

EVERY 24 MONTHS (Non-TCIS equipped compressors)
- Replace or overhaul all Discharge Valves (Pc. No. 578773).
- Replace or overhaul all Inlet Valves (Pc. No. 680001 or 680002). (The life of Inlet and Discharge Valves depends on the severity of service, available cooling air, oil passing rate of compressor, efficiency of inlet air filtration, etc. A two year valve change period is recommended by the Wabtec Corporation. Individual operating conditions will have a strong influence on the valves life).
 - Clean and inspect unloader mechanism.
 - Compressor-Exhauster Units Only: Clean and inspect Vacuum Maintaining Valve, (Pc. No. 567376-1718) Replace if necessary.
 - Replace Crankcase Breather Valve (Pc. No. 575308) in all Non-TCIS & TCIS equipped compressors.

EVERY 36 MONTHS (TCIS equipped compressors ONLY)
- Clean and inspect unloader mechanism.
- Renew valves.

AT LEAST ONCE EVERY 4 YEARS (48 MONTHS)

The four year overhaul period is recommended for 3-CD Type Compressors, 3-CD Type Exhausters and Combination Compressor Exhausters.

AT LEAST ONCE EVERY 6 YEARS (72 MONTHS)

The six year overhaul period is only recommended for Motor Driven Compressors equipped with the Thermostatically Controlled Intercooler System (TCIS).

IMPORTANT: The four and six year overhaul period represents the TIME PERIOD between overhauls that is recommended by Wabtec Corporation. The actual time of compressor operation or service before an overhaul is performed is heavily influenced by the type of service in which the compressor is used, the mileage of the locomotive between overhauls, the ambient temperature in which the compressor operates, the running speed of the compressor, oil change periods, the environmental conditions, and inlet air filtration.

The actual time periods between overhauls **MUST BE** established by the USER and should be based on USER conditions and experience.

The compressor is to be removed from the locomotive for regular overhaul utilizing genuine WABCO replacement parts.
12.0 REMOVING THE COMPRESSOR OR EXHAUSTER FROM THE LOCOMOTIVE

⚠️ WARNING: A lifting and support mechanism capable of safety handling 3000 pounds (1360.8 kilograms) is to be used during compressor removal.

Apply locomotive handbrake and/or parking brake. All power to the Compressor, Compressor-Exhauster, or Exhauster is to be cut-off. Wheel chocks are to be applied to the wheels to prevent vehicle movement. WARNING placards are to be placed on and about the vehicle indicating that work is to be performed.

12.1 Drain the oil from the compressor crankcase.

12.2 Remove the compressor from the locomotive following the builder and/or owner operating instructions. It is advisable to leave the mounting base shims in their respective positions, preferably by wiring them in place if the same compressor is to be reinstalled in the same locomotive from which it was removed. This will aid considerably in properly aligning the machine as well as saving considerable time and effort.

12.3 Transport the removed compressor to the shop area for maintenance. The transporting mechanism must be able to support 3000 pounds (1360.8 kilograms).

12.4 Installation of an overhauled or replacement compressor should be done in reverse order of removal following locomotive builder - owner/operator instructions.

12.5 Remove all WARNING placards and wheel chocks before attempting to move the locomotive.

13.0 REPAIR PROCEDURE - “IN SHOP”

13.1 EXTERIOR SURFACES

The external surfaces of the unit MUST BE thoroughly cleaned before disassembly. Use a low pressure jet of clean, dry air to blow the surface clean.

DO NOT USE CAUSTIC cleaners on the aluminum type intercooler cores, aftercooler cores and aluminum pistons.

13.2 REMOVAL OF DRIVE MOTOR

Remove the compressor drive motor according to the locomotive builder’s specifications. Consult the locomotive builder’s representative for further assistance.

13.3 COMPRESSOR CRANKSHAFT COUPLING HALF

To avoid damaging crankshaft bearings, exercise care when removing or installing the crankshaft coupling half. If the couplings have a shrink fit on the shaft, quick heating of the coupling hub, while using a gear puller, will aid in their removal. When hydraulic removal feature is incorporated into the shaft or coupling, it should be used. Remove the coupling drive key if used.

13.4 COOLING FAN

13.4.1 Remove the fan guard.

13.4.2 After the set screw and the clamping screw in the fan hub have been removed, the fan may be removed from the crankshaft by means of a puller. Tapped holes are provided for this purpose in the face of the fan hub.

13.4.3 If the fan hub has a shrink fit on the shaft, use the hydraulic removal feature incorporated into the fan hub for removal.

13.4.4 Remove the fan drive key, if so equipped.

13.5 EXTERNAL DETAILS

13.5.1 Remove the intercooler, aftercooler if so equipped, intake filters, unloader tubing, crankcase breather, side covers and oil pressure indicator.

IMPORTANT: If the compressor is equipped with an oil level float gage, remove the gage before removing the side cover to prevent damage to the float lever.

13.5.2 If the compressor is operated as an exhauster, remove the vacuum maintaining valve, crankcase evacuation tube or exhauster breather valve and filter if so equipped. Remove the vacuum inlet and discharge manifold assemblies from the heads.

13.6 CYLINDER ASSEMBLIES

13.6.1 Remove the valves from the cylinder heads and then remove the cylinder heads.

13.6.2 A Valve Plug Wrench is available for removing the valve plugs from the compressor heads. It is covered by WABCO Pc. No. 653874.

IMPORTANT: Express care that the piston assembly does not fall against the rod.

13.6.3 Remove the cylinders.
13.6.4 Remove and SCRAP all gaskets.

IMPORTANT: When removing the various gaskets CARE MUST BE TAKEN so that no damage is done to the machined metal surfaces. NO WIRE BRUSHES OR GRINDING TOOLS ARE TO BE USED WHEN REMOVING THE GASKETS. The proper and careful use of a putty knife or an air chisel is permissible. Appropriate procedures, in accordance with the instructions of the owner/maintainer of the compressor or exhauster are to be followed in the disposal of gasket material removed during the tear down.

13.6.5 Remove the connecting rod caps, then remove the connecting rod and piston assemblies.

IMPORTANT: The connecting rod caps and the associated connecting rod work together as a “matched” set of parts. KEEP THE CONNECTING ROD CAPS WITH THEIR MATING CONNECTING ROD AT ALL TIMES. Remove piston from connecting rod. Scrap the rings.

13.7 CRANKCASE DISASSEMBLY

13.7.1 Remove the oil strainer by first removing the ½ x 4" clamping bolt and ½" lock nut.

13.7.2 Remove the Oil Level Switch on compressors so equipped prior to removal of the oil pump cartridge.

13.7.3 Remove the oil pump cartridge, if so equipped. A ½"-13 UNC-2A bolt may be threaded into the cartridge on the oil strainer end to facilitate its removal.

13.7.4 When disassembling the crankcase assembly, it is advisable to position the crankcase so that the axis of the crankshaft is vertical and the main bearing housing faces upward.

13.7.5 If it becomes necessary to remove the oil seal with the crankshaft in place, the following procedure may be followed:

Drill four 0.125" diameter (3.175 mm) holes on the outside shield of the oil seal. Insert four self-tapping metal screws into the shield, then using the screws as gripping points, pry out the seal. Certain types of nail pullers have been found satisfactory for this purpose. Scrap the oil seals.

13.7.6 The following procedure should be adhered to when disassembling the crankcase. Care MUST BE exercised so that the oil pump plunger is not damaged.

13.7.7 Remove the ½ x 1½" cap screws which secure the main bearing housing to the crankcase. Insert three ½"-13 UNC-2A screws into the three tapped holes in the main bearing housing. After the screws are in contact with the crankcase, gradually raise the main bearing housing by turning each screw clockwise an equal amount until the main bearing housing comes free of the bearing.

⚠️ WARNING: A lifting and support mechanism capable of safety handling 3000 pounds (1360.8 kilograms) is to be used during compressor removal and installation.

13.7.8 The crankshaft may then be removed by means of a lifting device consisting of a threaded portion, such as a standard crankshaft, nut, to which has been welded a “U” shaped loop of sufficient size to permit the insertion of the hook of the lifting equipment. Tighten the nut on the crankshaft and slowly lift vertically in a straight line. It is usually necessary to rock the upper end of the crankshaft slightly back and forth at right angles to its axis until the oil pump body and the plunger comes free of the crankcase. Remove the oil pump body. Complete the removal of the crankshaft from the crankcase.

⚠️ WARNING: Damage to the oil pump plunger may occur if the oil pump plunger is jammed at any time during its removal.

13.7.9 Remove the oil seals from the crankcase and main bearing housing.

14.0 CLEANING, INSPECTION and REPAIRING

14.1 CLEANING

IMPORTANT: Do not use caustic cleaners on the aluminum type intercoolers, aftercoolers and pistons.

The Wabtec Corporation recommends a hot tank inhibited alkaline cleaner on the aluminum intercoolers, aftercoolers and low pressure aluminum pistons.

Clean all other serviceable metal parts to facilitate inspection. After the parts have been cleaned, they MUST BE completely dried. Use a low pressure jet of clean, dry air to blow the parts dry.

Make certain that all drilled oil passages in connecting rods, crankshaft, etc. are clean and free of obstructions, that the oil pressure indicator tube is not bent or damaged.

IMPORTANT: ALL gaskets, rubber parts, self-locking hardware and cotter pins ARE TO BE SCRAPPED. ONLY NEW Wabtec Corporation parts are to be used in place of the scrapped parts during the assembly procedure to permit the best fit and performance.
14.2 CONdemning LIMITS
Reference Table A on pages 46 & 47

“TABLE A” includes minimum and maximum condemning limits as applied to all main wearing parts for the “3-CD” Type Air Compressors, Exhausters, and Combination Compressor-Exhausters.

IMPORTANT: The dimensions given in “Table A” are based on the use of parts supplied by the Wabtec Corporation.

14.3 CYLINDERS AND PISTONS

14.3.1 Replace any cylinder that is found to be damaged beyond repair. This may include cylinders with damaged or broken cooling ribs as determined by inspection.

14.3.2 All reusable cylinders should be refinished, preferably by honing, to eliminate any irregularities on cylinder walls. The finish on the cylinder walls after refinning MUST BE between 20 and 40 micro-inches (0.508 and 1.016 micro meters). The crosshatch hone marks should be 35° to 45° from the horizontal for both the low pressure and the high pressure cylinders.

If the cylinder is not within the limits specified in “TABLE A”, the cylinder may be rebored and honed to a suitable standard oversize diameter while maintaining a finish as previously specified in item 14.3.2. A respective oversize piston MUST BE used if the cylinder is bored oversize. The oversizes for the cylinder are graduated in two steps of 0.010” (0.254 mm) each, the first oversize being 0.010” (0.254 mm) above the standard diameter. The oversize is to be stamped on the top of each cylinder flange so that it is visible when the head is removed. Consult your Wabtec Corporation Representative for information on available oversize pistons and cylinders for specific applications.

14.3.3 When reboring a cylinder to oversize, it MUST BE mounted in such a manner that the new bore will be concentric with the unworn portion of the old bore at both
ends. Also, the mounting flange must be perpendicular to the bore within 0.002” (0.050 mm) T.I.R. as determined by the dial indicator reading.

If the mounting flange face is not perpendicular, it may be corrected by removing the least possible amount of metal from the face of the flange while maintaining the same setting with which the cylinder was bored. Minimum cylinder lengths are specified in “TABLE A” (Pages 46 & 47).

14.3.4 ALUMINUM AND CAST IRON PISTONS

Aluminum Low Pressure Pistons were standardized in Wabtec Corporation “3-CD” Type Compressors in late 1967. Cast Iron Low Pressure Pistons are no longer available from the Wabtec Corporation, and, when necessary are replaced with the aluminum low pressure piston. The rules for usage of these pistons and any modifications required are as follows:

14.3.4.1 For “3-CD” (long stroke) Compressors - Use either the cast iron or aluminum low pressure pistons. These pistons can also be mixed in this compressor.

14.3.4.2 For “3-CDC” (short stroke) Compressors - Use ONLY the aluminum low pressure pistons. The use of cast iron pistons will cause vibration problems and premature compressor malfunction. When replacing cast iron with aluminum low pressure pistons on “3-CDC” Compressors, special attention MUST BE given to the crankshaft used.

14.3.4.3 On older “3-CDC” Type Compressors (built prior to late 1967) a modification to reduce the crankshaft balance weight is required before installing aluminum low pressure pistons.

WARNING: This modification is essential to limit compressor dynamic imbalance which could possibly result in a total compressor destruction and potential injury to bystanders.

The required reduction in weight can be accomplished by reducing the radius of the counterweights through machining. Figure 9 covers the modification to those crankshafts which have integrally forged counterweights. The required weight reduction on integrally forged shafts is obtained by machining the 6 1/2” radius of the counterweights to 5 1/2”. Figure 9 also covers the modification to these crankshafts which have pinned and welded counterweights. The required weight reduction on pinned and welded shafts is obtained by machining the 6 1/2” radius of the counterweights to 5 1/16”. CARE SHOULD BE TAKEN THAT ONLY ALUMINUM LOW PRESSURE PISTONS BE UTILIZED IN COMPRESSORS CONTAINING MODIFIED CRANKSHAFTS.

14.3.4.4 Vacuum Pistons - For “3-CDCU” and “3-CDCV” Type Exhausters. Aluminum Vacuum Piston (Pc. No. 590621), 7.75” diameter (196.85mm) and Cast Iron Vacuum Piston (Pc. No 592777), 5.5” diameter (139.7mm) are drilled with oil retrieval holes. These pistons are stenciled on the top of the piston “FOR VACUUM USE ONLY” and MUST NOT be used as a compressor piston.

The vacuum maintaining valve (Pc. No. 567376-1718) may be eliminated on Exhausters and Combination Compressor-Exhausters utilizing the above vacuum pistons. The vacuum maintaining valve is replaced by the Exhauster Breather Valve (Pc. No. 650953), and Filter (Pc. No. 650956).

14.3.4.5 High Pressure Cast Iron Piston. Worn cast iron piston wrist pin bores may be reclaimed with teflon layered bushings (Pc. No. 580390), after exceeding the condemning limits of “TABLE A” (Pages 46 & 47). In using this bushing, it is necessary to bore the wrist pin bore of the piston to a diameter of 1.9375”/1.9365” (49.2125/ 49.1871 mm) and a surface finish of 80 micro-inches (2.032 micro meters). After the bushing (Pc. No. 580390), is pressed into place, it must be checked for size as shown in “TABLE A” (Pages 46 & 47) of the specifications.

14.4 PISTON RINGS

Reference Figure 10

14.4.1 New rings are to be installed on the piston using a suitable piston ring installation tool.

New standard rings are:
- H.P. Compression, (Pc. No. 520125)
- H.P. Oil, (Pc. No. 521196)
- L.P. Compression, (Pc. No. 520123)
- L.P. Oil, (Pc. No. 520133)

The rings should be expanded just enough to clear the piston. Care must be exercised when installing the piston rings to prevent breakage or distortion. The position of the piston rings is shown in Figure 10. Consult your Wabtec Corporation Representative for information on the correct piston rings for specific applications.

14.5 CRANKCASE

Reference Figure 11

14.5.1 Replace the crankcase if it is damaged beyond repair.

If the main bearing bore is eccentric or worn more than 0.002” (0.050 mm), it may be rebushed using repair bushing (Pc. No. 543382).
1. Notched type of compression rings to be assembled in piston with notch down toward the bottom of piston.

2. Taper face type of compression rings to be assembled in piston with taper up as shown. This type of ring will be marked on the side which is to be toward top of piston.

3. Ventilated double wiper taped faced oil ring to be assembled in piston with taper edges up as shown.

4. Ventilated double wiper channel type oil ring can be assembled in piston with either side up.
14.5.2 In using this bushing, it is necessary to bore the crankcase to a diameter of 7.7455"/7.7470" (196.7357/196.7738 mm). Bore to have a surface finish of 130 micro-inches (3.302 micro meters).

14.5.3 After the bushing is pressed in place, it MUST BE bored to a diameter of 7.4801"/7.4815" (189.9945/190.0301mm) with a surface finish of 80 micro-inches (2.032 micro meters).

14.6 MAIN BEARING HOUSING
Reference Figure 11

14.6.1 Replace the main bearing housing if it is cracked, broken, or otherwise damaged beyond repair. If the main bearing bore is eccentric or worn more than 0.002" (0.050mm), the main bearing housing may be rebushed using repair bushing (Pc. No. 543382).

14.6.2 In using the repair bushing, it is necessary to bore the main bearing housing to a diameter of 7.7455"/7.7470" (196.7357/196.7738 mm). The bore is to have a maximum surface finish of 130 micro-inches (3.302 micro meters).

14.6.3 After the bushing is pressed in place, it must be bored to a diameter of 7.4801"/7.4815" (189.9945/190.0301mm) with a maximum surface finish of 80 micro-inches (2.032 micro meters).

14.7 CRANKSHAFT
Reference Figure 12

14.7.1 Replace the crankshaft if an accurate and complete check reveals any of the following defects:

14.7.2 Bent more than 0.002" maximum or cracked.

14.7.3 Crankpin is at condemning limit or beyond the condemning limit, as listed in “TABLE A” (Pages 46 & 47).

Figure 11 - 3CD Air Compressors

Instructions for Bushing Crankcase & Main Bearing Housing if worn in excess of 0.0021"
NOTES:

- Crankpin throw “E” must be maintained at 2.8105/2.8145” (71.386/71.488 mm) for 3CD, 3CB, 3CDB, 3CDBL, & 3CWDL air compressors.

- Crankpin throw “E” must be maintained at 2.0605/2.0645” (52.336/52.438 mm) for 3CDC, 3CBC, 3CDCB, 3CDCL, & 3CWDC air compressors.

- Diameters marked “X” must be concentric & parallel to each other within 0.001” (0.025 mm) total indicator gage reading.

- Diameters marked “Y” must be parallel to diameters “X” within 0.005” (0.127 mm) for length of oil pump eccentric and crankpin.

- Oil seal journals must be restored to original dimensions.

- Ball/Roller bearing journals must be restored to original dimensions.

- Surface finish on diameters “A”, “B” & 3.498/3.502” (88.849/88.950 mm) must not exceed 16 MU inches (0.406 Mum).

- Surface finish on 3.5434/3.5440” (90.0023/90.0176 mm) diameters & tapered end portions must not exceed 80 Mu. inches (2.032 Mum).

Table: Crankshaft Undersize Dimensions and Alignment Specifications

<table>
<thead>
<tr>
<th>Dia. “A”</th>
<th>Dia. “B”</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.623/3.624”</td>
<td>4.374/4.375”</td>
<td>Standard</td>
</tr>
<tr>
<td>(92.024/92.049)</td>
<td>(111.099/111.125)</td>
<td></td>
</tr>
<tr>
<td>3.613/3.614”</td>
<td>4.364/4.365”</td>
<td>0.10” (0.254) Undersized</td>
</tr>
<tr>
<td>(91.770/91.795)</td>
<td>(110.845/110.871)</td>
<td></td>
</tr>
<tr>
<td>3.603/3.604”</td>
<td>4.354/4.355”</td>
<td>0.20” (0.508) Undersized</td>
</tr>
<tr>
<td>(91.516/91.541)</td>
<td>(110.591/110.617)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12 - 3CD Air Compressors

Crankshaft Undersize Dimensions and Alignment Specifications
14.7.4 Main bearing journal worn to less than condemning limit as listed in “TABLE A” (Pages 46 & 47).

14.7.5 Taper or threads damaged to the extent of not being suitable for reconditioning.

14.7.6 Keyway damaged beyond repair.

14.7.7 Oil pump plunger diameters are at condemning limit or beyond as listed in “TABLE A” (Pages 46 & 47).

14.8 FORGED STEEL CRANKSHAFTS

14.8.1 If reliable facilities are available, hard chrome plating or welding and subsequent regrinding to respective standard diameters is permissible on the forged steel crankshaft. Steel crankshafts can be identified by the word “PARK” forged into the shaft.

IMPORTANT: The Wabtec Corporation assumes NO responsibility for the results obtained by “reclaiming” a crankshaft by any party other than WABCO. The Wabtec Corporation assumes NO responsibility for damages to equipment or injuries which may be attributed to an equipment malfunction due to the use of a reclaimed crankshaft, nor will the Wabtec Corporation be responsible for any claims, including claims by third parties. New crankshafts may be purchased from the Wabtec Corporation's Locomotive Products Division.

14.9 DUCTILE IRON CRANKSHAFTS

14.9.1 The user may, at their own risk, reclaim a ductile iron crankshaft by applying a nickel electroplating solution of approved materials recommended by the supplier of the plating materials for this application. Chrome plating or welding may also be used.

14.9.2 The coating of the crankshaft MUST provide a good bond with the base metal and also provide a good bearing surface. The ground finish of the coatings are to be to Wabtec Corporation Specifications.

IMPORTANT: The Wabtec Corporation assumes NO responsibility for the results obtained by “reclaiming” a crankshaft, by any party other than WABCO. The Wabtec Corporation assumes NO responsibility for damages to equipment or injuries which may be attributed to an equipment malfunction due to the use of a reclaimed crankshaft, nor will the Wabtec Corporation be responsible for any claims, including claims by third parties. New crankshafts may be purchased from the Wabtec Corporation.

14.9.3 Ductile iron crankshafts can be identified by the WABCO monogram which is cast on the crank cheek of the crankshaft.

14.9.4 If the crankpin is worn to less than 3.621” (91.9734 mm) or if worn out of round more than 0.001” (0.025 mm), it may be ground to a definite undersize step of 0.010” (0.254 mm), or 0.020” (0.508 mm), or, if reliable facilities are available, plating or subsequent regrinding to respective standard diameter may be considered at the user’s risk, if done by any party other than Wabtec Corporation.

IMPORTANT: The 0.125” (3.175 mm) radius at each end of crankpin MUST BE maintained when grinding undersize diameters. Refer to “TABLE B” for stenciling and color coding information.

14.9.5 The finish of the crankpin MUST BE 16 micro-inches (0.4064 micro-meters) or better. A crankpin shall not be tapered more than 0.001” (0.0254 mm) nor be hourglass or barrel shaped by a like amount.

A very light polishing with crocus cloth, after grinding, should be beneficial in removing any roughness.

14.9.6 The crankshaft should then be stenciled for future reference in a visible location with its respective undersize letter W or Y and painted over with the color of paint as denoted in “TABLE B”.

14.9.7 The crankpin throw MUST BE held to the following dimensions:

- “3-CD”, “3-CWDL”, “3-CDBL” and “3-CD” Compressors, combination compressor-exhausters and exhausters 2.8105/2.8145 inch (71.3867/71.4883 mm).
- “3-CDC”, “3-CDCL”, “3-CDCBL” and “3-CBC” Compressors, “3-CDCU” Combination Compressor-Exhausters, and 3CDCVL Exhausters 2.0605/2.0645 inch (52.3367/52.4383 mm).

14.9.8 The crankshaft oil seal journals, if scored, MUST BE refinished sufficiently to eliminate the score marks. The 3.497” to 3.503” diameter oil seal journals are to be plunged ground to 16 micro-inches (0.4064 micro meters) (RMS), maximum. No machine lead, nicks, scratches, or surface voids are permitted. The standard compressor oil seal (Pc. No. 680008), may be used if the finished diameter is not less than 3.490” (88.646 mm). If the journals are worn beyond this limit, or if refishing has taken the journals beyond this limit, the crankshaft is to be scrapped and replaced with a NEW crankshaft. If the user so desires, the user may, at
user’s risk, restore the finish to the original Wabtec Corporation specified dimensions by chrome plating, welding or electro plating.

Wabtec Corporation assumes NO responsibility for the results obtained by any party other than WABCO.

14.9.9 The seat on the crankshaft on which either the old style oil relief valve (Pc. No. 541791), or a blanking nut (Pc. No. 540290), is seated must be refinished if scored, in order to obtain a tight seal.

14.9.10 The crankshaft taper must be checked and refinished if necessary. The finish of the taper must not exceed 80 micro-inches (2.032 micro meters).

14.1 CONNECTING RODS

14.1.1 Connecting rods with replaceable bearing inserts that meet dimensional and alignment specifications may be reconditioned to fit crankpins of either standard or undersize diameters.

14.1.2 Consult your Wabtec Corporation Representative for information on the exact bearing inserts and crankpins for specific applications.

14.1.3 The undersize of the connecting rod should be identified by the same color code as that used for the crankpin. Refer to “TABLE B” (Page 47).

14.10.4 The insert bearing with the HOLE AND OIL GROOVE MUST ALWAYS be placed in the ROD PART of the bore while the plain insert WITHOUT the oil groove and hole MUST BE placed in the CONNECTING ROD CAP to insure lubrication for the wrist pin.

14.10.5 The “3-CD” Type Compressor, Exhauster, or Combination Compressor-Exhauster may operate as low as 200 rpm, provided lubrication holes have been added to the connecting rods. Refer to Figure 13 for modification instructions.

14.10.6 The connecting rod must be visually inspected before removing the insert bearing and connecting rod bushing. The satisfactory alignment of the connecting rod will be reflected by the wear patterns. If the wear pattern is straight across the bearing, no further action is required.

14.11 CONNECTING ROD WRIST PIN BUSHING REPLACEMENT

14.11.1 Instructions for the replacement of bronze wrist pin bushings in connecting rods are shown in Figure 14. Connecting rods which were originally equipped with teflon layered bushings require only a direct replacement with a new teflon layered bushing. Condemning limits for the wrist pin bore and the connecting rod must be as specified in “TABLE A” (Pages 46 & 47) for the teflon layered bushed connecting rods and for the bronze bushed connecting rods.

14.11.2 See Figure 15, for installation instructions for modifying previous bronze bushed connecting rods for teflon layered bushing installation.

14.12 PROCEDURE FOR CHECKING ALIGNMENT OF CONNECTING ROD

14.12.1 Should a visual inspection of the used insert bearing reveal an uneven wear pattern the rod must be checked for alignment.

14.12.2 With the piston removed from the connecting rod, insert the wrist pin into the connecting rod at the wrist pin end. Insert a 3.624” (92.05 mm) diameter pin into the crankpin end of the connecting rod and tighten the connecting rod cap securely to the pin with 100 to 150 foot-pounds torque (135.1/202.7 Nm) for castle nuts.

14.12.3 Place the pin at the crankpin end of the connecting rod between a pair of “V” blocks on a flat checking surface as shown in Figure 17. With the connecting rod perpendicular to the checking surface, check the distance from the checking surface to the highest point at both ends of the wrist pin. This check should be made with a dial indicator. The reading from the checking surface to both ends of the wrist pin MUST BE within 0.001” (0.025 mm) for every 6” (152.4 mm) length of wrist pin.

14.12.4 Turn the wrist pin end of the connecting rod downward until the connecting rod is horizontal to the checking surface. With the connecting rod in this position, check the distance from the checking surface to the highest point at both ends of the wrist pin. This check should be made with a dial indicator. The readings from the checking surface to both ends of the wrist pin MUST BE within 0.001” (0.025 mm) for every 6” (152.4 mm) length of wrist pin.

14.12.5 All connecting rod bearings on the same crank pin MUST BE of the same degree of standard size or undersize.
Figure 13 - 3CD Air Compressors
Connecting Rod Modification for Lubrication Holes

OLD STANDARD
Pc. No. 580081

NEW STANDARD
Pc. No. 580081

0.109" Drill
0.015" Drill thru Plug
0.12 x 0.09" Brass Plug
Pc. No. 17179
Pressed in Place
Figure 14 - 3CD Air Compressors
Connecting Rod Bronze Wrist Pin Bushing Replacement

Wrist Pin bore must be square & parallel with 3.875/3.876" (98.425/98.450 mm) bore in both planes to within 0.001" IN 2" (0.025 IN 50.8 mm)

1.7505/1.7510" (44.4627/44.4754 mm) Finish Bore
1.9657/1.9667" (49.9287/49.9541 mm) BORE
3.6252/3.6268" (92.0800/92.1207 mm) Dia. with Insert Bearings in Place

0.250" (6.35) Dia. hole must be 80% open after bushing is pressed in place

ENLARGED SECTION SHOWING OIL GROOVE

Face of plug to be flush with bottom of Oil Groove

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2CD, 2CB, 2CDB & 2CBU</td>
<td>13.745/13.750" (349.123/349.250)</td>
<td>1.558/1.568" (39.573/39.827)</td>
<td>2.112/2.114" (53.644/53.695)</td>
<td>516742</td>
</tr>
<tr>
<td>4CD2UC, 6CD4UC & 6CDX4UC</td>
<td>13.745/13.750" (349.123/349.250)</td>
<td>1.558/1.568" (39.573/39.827)</td>
<td>2.112/2.114" (53.644/53.695)</td>
<td>516742</td>
</tr>
<tr>
<td>3CD, 3CB, 3CDB, 3CWD, 3CDL, 3CDBL, 3CWDL, 6CD, 6CB & 6CD3UC</td>
<td>13.745/13.750" (349.123/349.250)</td>
<td>1.995/2.005" (50.673/50.927)</td>
<td>1.744/1.746" (44.297/44.348)</td>
<td>514613</td>
</tr>
<tr>
<td>3CDC, 3CDCL, 3CDBL, 3CDCU & 3CDCUA</td>
<td>14.495/14.50" (368.173/368.300)</td>
<td>1.995/2.005" (50.673/50.927)</td>
<td>1.744/1.746" (44.297/44.348)</td>
<td>514613</td>
</tr>
</tbody>
</table>
NOTES:
1. Machine wrist pin bore of bronze bushing to 1.9365/1.9375" dia. (49.1871/49.2125 mm).
 Surface finish of bore to be 80 μ in max (0.0020 mm).
2. 1.9365/1.9375" dia. (49.1871/49.2125 mm) bushing bore must be square and parallel to 3.875/3.876" (98.425/98.450 mm) dia. in both planes to within 0.001" in 2.00" (0.0254 mm in 50.8 mm).

NOTES:
1. Press bushing (Pc. No. 578245 or 580087) into connecting rod so that the oil hole in bushing and connecting rod are aligned.
2. Check bushing bore to 1.7507/1.7535" dia. (44.4677/44.5389 mm) dimension. If bore is less than 1.7507" (44.4677 mm) ream to size. Bushing teflon coating must not be scuffed.
3. 1.7507/1.7535" (44.4677/44.5389 mm) wrist pin bore must be square and parallel to 3.875/3.876" (98.425/98.450 mm) dia. in both planes to within 0.001" in 2.00" (0.25 mm in 50.8 mm).
14.13 CONNECTING ROD TO CRANKPIN FIT

14.13.1 The fit of the connecting rod on the crankpin is designed for insert bearings made to specifications of the Wabtec Corporation. Always use NEW insert bearings for wear adjustments. Cover the crankpin with a film of oil before placing the connecting rod and cap in place. Always use new insert bearings (Pc. No. 540589).

14.13.2 Connecting rod caps MUST BE fitted with bolt (Pc. No. 514617), castle nut (Pc. No. 68770), and cotter pin (Pc. No. 522772), which are available from the Wabtec Corporation. The correct torquing method is to torque the castle nuts evenly to 100 foot-pounds (135.1 Nm.); then continue torquing the nuts until the new cotter pin can be inserted through the slot in the nuts and drilled hole in the bolts.

CAUTION: DO NOT EXCEED 150 foot-pounds (202 Nm.) torque.

14.14 OIL PUMP - CARTRIDGE STYLE

14.14.1 Replace the oil pump plunger and oil pump body if worn beyond the limits in “TABLE A” (Pages 46 & 47).

14.14.2 The oil pump cartridge located in the oil pump body must be removed and the inlet valve, discharge valve and oil pressure relief valve inspected. Replace the complete cartridge (Pc. No. 566790) if any valve seat is worn or grooved.

14.14.3 The discharge valve (Pc. No. 540281) must be replaced if worn.

14.14.4 The poppet style inlet valve must be inspected to assure that it has a good sealing surface with the inlet valve seat inside the cartridge. REPLACE the valve spring retainer (Pc. No. 540280) if worn. REPLACE the inlet valve spring (Pc. No. 540279).

14.14.5 The oil pressure relief valve located in the end of the cartridge must be removed for inspection. The valve (Pc. No. 540281) must not be worn. REPLACE if necessary. Also REPLACE the oil pressure relief valve spring (Pc. No. 540282).

14.14.6 The older “3-CD” Type Air Compressors and Exhausters utilizing the uniflow style oil pump plunger assembly MUST BE within the wear limits as shown in Figure 17. The oil pump plunger and body must meet the dimensions specified in “TABLE A” (Pages 46 & 47).

14.14.7 The oil pressure relief valve used with the uniflow type oil pump is located in the crankshaft. Refer to Figure 6.
Inspect the body of the relief valve to be sure that:

- The head flange is smooth and free from defects or damage.
- The threads are not damaged.
- The valve bore is not worn or excessively grooved.
- The valve seat is free of defects and that it is no wider than 0.040".
- The retaining ring groove is not worn or damaged. The ring groove diameter is to be 0.870" maximum. The width of the ring groove is not to exceed 0.074".
- Inspect the valve.
- Replace the valve if it is worn or if the sealing face is grooved.
- Inspect the spring seat.
- Replace the spring seat if the retaining ring lip is worn or damaged, or if the valve stop portion is peeled over or damaged.

14.14.18 A conversion kit (Pc. No. 541430), is available for replacing uniflow style oil pumps with cartridge type oil pumps on “3-CD” Type Compressors. If the cartridge type oil pump is used to replace the uniflow type oil pump, the relief valve in the crankshaft MUST BE removed and the proper blanking nut (Pc. No. 540290), inserted.

14.15 OIL PRESSURE INDICATOR

14.15.1 The Oil Pressure Indicator MUST BE inspected and be within the limits as specified in “TABLE A”, (Pages 46 & 47). Replace the body and/or the piston if worn beyond limits as specified in “TABLE A” (Pages 46 & 47), or if scored. Replace Piston O-Ring (Pc. No. 574422) and the Piston Stem O-Ring (Pc. No. 567090).

14.16 OIL LEVEL GAGE - FLOAT TYPE

14.16.1 The Oil Level Gage MUST BE inspected to determine whether it is working properly. Replace the complete assembly if worn, broken or inoperative.

14.16.2 A New Oil Level Gage Dipstick can be used as a replacement for the Float Type Oil Level Gages without modification to the compressor crankcase.

14.16.3 Consult your Wabtec Corporation Representative for ordering and/or specific installation information concerning the Oil Level Gage Dipsticks.

14.17 MAIN BEARINGS

Ball and spherical roller bearings MUST BE washed in aliphatic solvents (mineral spirits), completely dried by blowing with a low pressure jet of clean, dry air, and then examined carefully. If worn, pitted, damaged, or otherwise unserviceable, the bearing(s) MUST BE replaced. If there is any question as to whether the bearing is serviceable or not, it is to be replaced. If a careful examination reveals that the bearing is in serviceable condition, the bearing is to be lubricated with oil immediately after examination and then wrapped in Volatile Corrosion Inhibitor (VCI) paper.

14.18 CYLINDER HEADS AND VALVES

14.18.1 Cylinder heads

14.18.1.1 Use a caustic type cleaner or other suitable cleaning solution that is capable of removing attached carbon.

14.18.1.2 After the cylinder heads have been cleaned, they MUST BE dried completely. Use a low pressure jet of clean dry air to blow the cylinder heads dry.

14.18.1.3 Inspect the heads for damage. The cylinder heads may be reused if they are free of damage. If cracked, cut, broken, excessively worn, or damaged in any way, the head is to be SCRAPPED and replaced with a NEW Wabtec Corporation part.

14.18.1.4 Valve seats must be visually inspected for nicks and cracks.

14.18.2 Valves - General Information

14.18.2.1 Old Style Discharge Valve Pc. No. 566430

14.18.2.2 IMPORTANT: The Older Style Discharge Valve (Pc. No. 566430), is now obsolete and no longer available. This obsolete valve is to be replaced with the NEW Style Discharge Valve (Pc. No. 578773).

14.18.3 Old Style Inlet Valve Pc. No. 514645

14.18.3.1 IMPORTANT: The Older Style Inlet Valve (Pc. No. 514645), is now obsolete and no longer available. This obsolete valve is to be replaced with a Conversion Combination Kit (Pc. No. 592512).
Dimension from end of Oil Pump Plunger to bottom of ball for new assembly is 0.271” (6.883 mm).

When this dimension reduces to less than 0.225” (5.715 mm) the plunger must be scrapped.

Condemning Gage (Pc. No. 553632) should be used for checking this dimension.

Figure 17 - 3CD Type Air Compressors Oil Pump Plunger
Check Valve Seat Limit and Condemning Gage
This Conversion Combination Kit (Pc. No. 592512), consists of a NEW Standard Inlet Valve with unloader (Pc. No. 680001), and an Unloader Spring (Pc. No. 592097). Valve (Pc. No. 680002) does not include the unloader and is used only in vacuum cylinder heads.

14.19 UNLOADER

Reference Figure 18

The details of the different vintage of unloader valve are not interchangeable. Exercise care when cleaning and assembling these parts so that a mix-up does not occur.

14.19.1 After disassembling and cleaning the unloader valve parts with mineral spirits and drying them completely by blowing with a jet of clean, dry air, inspect the unloader valve and valve seat for any nicks and grooves that can affect the sealing surface.

14.19.2 The present standard unloader valve complete (Pc. No. 651188), is a direct replacement for the previous standard unloader valve complete (Pc. No. 514667). The o-ring (Pc. No. 593179), need only be replaced upon overhaul. No lapping is necessary with the latest design unloader valve.

14.19.3 Present standard WABCO inlet valves (Pc. No. 680001), utilize an unloader spring (Pc. No. 592097), for unloading purposes. Inspect the spring for cracks.

14.19.4 Inspect the intercooler pressure seal valve (Pc. No. 563202) for nicks or cracks. Lap if necessary inside the unloader body (Pc. No. 514657).

14.20 INTERCOOLERS - (COPPER FINNED TUBE TYPE)

14.20.1 The finned copper tubing intercooler should be disassembled and the tubes should be cleaned internally and externally, or should be replaced. When cleaning the intercooler tubes externally, all loose paint and foreign matter MUST BE removed in order to maintain the efficiency of this important cooling device. Bent fins must be reasonably straightened.

14.20.1.1 The replacement of an intercooler tube requires the use of a special tool, shown in Figure 19, that permits the driving of the intercooler tube into the cast iron header without distorting the tube. A second tool, Figure 20, is used to flare the hard brass ferrules before inserting inside the intercooler tube. The flare prevents the ferrule from falling into the intercooler tube during the rolling in operation.

14.20.1.2 The following procedure is recommended for intercooler tube replacement.

14.20.1.3 Remove the intercooler tube assembly from the top and bottom headers and riser.

14.20.1.4 A wide sharp chisel is used to cut the intercooler tube level with the cast iron headers. No burrs must remain to facilitate removal.

14.20.1.5 Drive the intercooler tube and ferrule remnant out of the cast iron header from the outside of the casting inward.

14.20.1.6 Insert one end of the replacement tube in the cast iron header. The tube will be at a slight angle at this time. Apply the drive tool (Figure 19) to the opposite end of the tube. The sliding member slides over the tube and prevents the copper tube from swelling when driven. Drive the intercooler tube far enough into the cast iron header on the driven end. A few of the fins on the intercooler tube will bunch together during this operation. Space the intercooler tube equidistant between the headers.
14.20.1.7 Hard brass ferrules (Pc. No. 517660) MUST BE flared with a tapered drive tool before inserting in the inside of the intercooler tube.

14.20.1.8 "C" clamp a flat steel plate on one end of the cast iron header. This prevents the intercooler tube from being forced above the clamping surface during the rolling operation.

14.20.1.9 Insert the ferrule inside the intercooler tube and roll in place. It is usually necessary to insert a screwdriver against the tube and pry outward against the next tube to prevent the intercooler tube from rotating during the initial rolling operation. This operation is necessary only on one end.

14.20.1.10 Remove the steel plate and insert the ferrule inside the intercooler tube. Roll in place.

14.20.1.11 The finned copper tube intercooler MUST BE reassembled and the inlet and discharge flanges blocked off with approximately 1/2" (12.7 mm) steel plates with holes drilled to match the intercooler flange. There must be no leakage present with 75 psig (517.24 kPa) in the intercooler.

14.20.2 ALUMINUM INTERCOOLERS AND TCIS

14.20.2.1 Aluminum intercoolers must be tested at 75 psig (517.24 kPa). If an intercooler shows signs of leakage it must be scrapped and replaced with NEW O.E.M. parts.

14.20.2.2 Disassemble the Thermostatically Controlled Intercooler System. The thermostat (Pc. No. 653515), oring (Pc. No. 653927), and seal (Pc. No. 653518) and high temperature indicator (Pc. No. 654006) must be replaced with new parts at the 6 year (72 months) maintenance cycle.

14.20.3 RAPID UNLOADER (PURGE VALVE)

14.20.3.1 Remove all pilot air tube connections to the purge valve.

14.20.3.2 Remove the acorn nut and lock washer from the heater assembly to disconnect the heater from the purge valve.

14.20.3.3 Remove the purge valve from the intercooler by removing two 3/8" screws.

14.20.3.4 Remove the 3/8" flange gasket from the intercooler flange. SCRAP the gasket.

14.20.3.5 Visually inspect the exposed mounting face of the purge valve and its mounting flange on the bottom of the intercooler to be sure it is clean and free of damage.

14.20.4 DISASSEMBLY - PURGE VALVE

14.20.4.1 Remove the four socket head cap screws (20a-1) and lock washers (20a-2) that secure the square cap (20a-3) to the body (20a-8). SCRAP O-ring (20a-4).

14.20.4.2 Remove cup seal (20a-5) from the top of the piston and SCRAP cup seal.

Figure 19 - CD Type Air Compressors
Intercooler Tube Replacement Tools

Figure 20 - CD Type Air Compressors
Intercooler Tube Replacement Tools
14.20.4.3 Remove hex cap plug (20a-15) from the body (20a-8). SCRAP O-ring (20a-14).

14.20.4.4 Remove spring (20a-13) and seat assembly (20a-9, 10, 11 & 12) from body (20a-8).

14.20.4.5 Remove stop nut (20a-12) from purge valve stem (20-9).

14.20.4.6 Remove seat washer (20a-11) and seat (20a-10) from purge valve stem (20a-9). SCRAP Teflon seat (20a-10).

14.20.4.7 Remove piston (20a-6) from body (20a-8). SCRAP O-ring (20a-7).

14.20.5 CLEANING AND INSPECTION - PURGE VALVE

14.20.5.1 NONREUSABLE PARTS

14.20.5.1.1 All O-rings, cup seals, and Teflon seats are to be SCRAPPED and replaced with NEW Wabtec Corporation Parts.

14.20.5.2 REMAINING PARTS

14.20.5.2.1 Wash all remaining parts in a cleaning solvent as described in Section 14.20.4

14.20.5.2.2 After the parts are cleaned they MUST BE dried completely. A low pressure jet of clean dry air may be used to dry the parts.

14.20.5.2.3 Inspect the parts and replace any part that is excessively worn or damaged in any way.

14.20.6 ASSEMBLY - PURGE VALVE

14.20.6.1 Coat the surface of O-ring (20a-7) with Number 2 Silicon Grease meeting Wabtec Corporation Specification M-07680-02. Also fill the O-ring groove of the piston (20a-6).

14.20.6.2 Install the NEW lubricated O-ring (20a-7) into the lubricated groove of the piston (20a-6).

14.20.6.3 Install the lubricated piston/O-ring assembly into the purge valve body (20a-8).

14.20.6.4 Install the purge valve seat (20a-10) into the seat washer (20a-11).

14.20.6.5 Install the purge valve seat and seat washer assembly over the purge valve stem (20a-9). Secure assembly with stop nut (20a-12). Complete assembly by inserting the purge valve stem (20a-9) into the piston (20a-6) inside the body (20a-8).
14.20.6.6 Install the spring (20a-13) over the seat washer (20a-11).

14.20.6.7 Install lubricated O-ring (20a-14) over the hex cap plug (20-15).

14.20.6.8 Install the hex cap plug with O-ring into body (20a-8) and tighten securely.

14.20.6.9 Lubricate the cup seal (20a-5) and piston bore inside the body (20a-8) using Wabtec Corporation Specification M-07680-02.

14.20.6.10 Install the lubricated cup seal (20a-5) inside the lubricated piston bore.

14.20.6.11 Install O-ring (20a-4) in body (20a-8).

14.20.6.12 Install square cap (20a-3) onto the body (20a-8) using four socket head cap screws (20a-1) and lock washers (20a-2) and tighten securely.

14.20.7 TESTING - PURGE VALVE

14.20.7.1 After the purge valve is assembled BUT BEFORE it is returned to service it MUST PASS a series of tests following the Wabtec Corporation Specification.

14.20.7.2 Contact your Wabtec Corporation Representative if additional information is required.

14.21 ALUMINUM AFTERCOOLERS

14.21.1 The aluminum aftercooler cores must be tested at 150 psig (517.24 kPa). Aluminum aftercoolers that show signs of leakage must be scrapped and replaced with new O.E.M. parts.

14.22 SAFETY VALVES

14.22.1 The relief valves and safety valves used on the intercooler, aftercooler, and discharge pipe must be tested in accordance with the following WABCO Test Specifications.

- E-1 Safety Valve
 Pc. No. 10526-0060
 WABCO Test Specification T-2174-0

- J-1 Safety Valve
 Pc. No. 558296-0180 & Pc. No. 558290-0175
 WABCO Test Specification T-2668-0

14.23 CRANKCASE BREATHER

The metallic filter (Pc. No. 540223) in the crankcase breather must be replaced to avoid disintegration due to fatigue. The breather valve diaphragm (Pc. No. 575308) must also be replaced. All other breather parts must be replaced if necessary.

14.24 EXHAUSTER BREATHER VALVE AND FILTER

The metallic filter material (Pc. No. 540223), Breather Valve, (Pc. No. 575308) must be replaced to avoid disintegration due to fatigue. The Inlet Air Filter (Pc. No. 650956) must also be replaced. The vented screw holding the breather valve assembly must be cleaned during assembly of the breather valve, to assure the vent hole is open.

14.25 CRANKCASE VACUUM MAINTAINING VALVE

PC. NO. 567376-1718

The crankcase vacuum maintaining valve used in the 3CDCU Compressor-Exhauster must be checked for freedom of movement. It is extremely important that the vent in the valve body be kept clean of contaminants so as not to restrict the flow of air to the top of the piston. Also, because of the close fit between the body and piston, extreme care must be taken to exclude contaminants from the valve when the cap is removed. The valve shims regulate the amount of vacuum maintained in the exhauster crankcase and should be kept with that particular valve and spring combination. See condemning limits listed in “Table A” (Pages 46 & 47).
Figure 21 - Oil Seal Installation Tools

INSTALLATION NOTES

1. Oil Seal to be installed **WITHOUT** lubrication.
2. Install Oil Seal over pre-assembly cone.
3. Remove from pre-assembly cone & **IMMEDIATELY** assemble over crankshaft.
4. Place the Oil Seal into the Oil Seal Bore being careful not to twist the Oil Sealing Lips.
5. Tap the Oil Seal into its bore using a press fitting tool as shown.
6. The Oil Seal must not be pressed in below the outside machined surface.

OIL SEAL

TOP PLUG
- Material: M-1015-21
- ASTM A-285

BASE PLUG
- Material: M-1015-21
- ASTM A-285

ATMOSPHERE SIDE
- ANS Schedule 40 Steel
- Pipe Material M-1015-41
- ASTM-120
- New Standard Oil Seal
- Pc. No. 680008

Pre-Assembly Cone
- Material: M7130
- Pc. No. 680008

NEW STANDARD OIL SEAL
- Pc. No. 680008
14.26 TORQUE VALUES

The following torque limits are recommended when tightening the nuts and bolts on the compressor:

<table>
<thead>
<tr>
<th>Part</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8" bolts & nuts</td>
<td>90 ft.-lbs. (122.94 Nm.)</td>
</tr>
<tr>
<td>½" bolts & nuts</td>
<td>50 ft.-lbs. (67.9 Nm.)</td>
</tr>
<tr>
<td>¾" bolts & nuts</td>
<td>20 ft.-lbs. (27.12 Nm.)</td>
</tr>
<tr>
<td>5/16" bolts & nuts</td>
<td>11 ft.-lbs. (14.91 Nm.)</td>
</tr>
<tr>
<td>¼" bolts & nuts</td>
<td>5.5 ft.-lbs. (7.45 Nm.)</td>
</tr>
<tr>
<td>Connecting Rod Castle Nuts</td>
<td>100 - 150 ft.-lbs. (135.6 - 203.4 Nm.)</td>
</tr>
<tr>
<td>Valve Plugs (Cages)</td>
<td>300 ft.-lbs. (406.8 Nm.)</td>
</tr>
<tr>
<td>Valve Cap Nuts (Inlet & Discharge)</td>
<td>200 ft.-lbs. (271 Nm.)</td>
</tr>
<tr>
<td>Unloader Cap Nut</td>
<td>200 ft.-lbs. (271 Nm.)</td>
</tr>
<tr>
<td>Unloader Body</td>
<td>200 ft.-lbs. (271 Nm.)</td>
</tr>
<tr>
<td>Coupling Nut</td>
<td>500 ft.-lbs. (678 Nm.)</td>
</tr>
</tbody>
</table>

15.0 ASSEMBLY

15.1 CRANKSHAFT INSTALLATION

15.1.1 On the 3CD Type compressors, exhausters or combination compressor-exhausters, assemble the oil pressure relief valve in the crankshaft, if so equipped, and tighten securely.

15.1.2 When installing the parts of the crankcase and crankshaft assembly, the procedure outlined below should be followed.

15.1.3 Install the oil pressure indicator tube in place inside the crankcase.

15.1.4 Heat the main bearings to a temperature of approximately 200° F (93.3° C) and place one on the crankcase end of the crankshaft. Allow the bearing to cool on crankshaft before proceeding.

WARNING: Insulated gloves must be worn and extreme care taken to prevent burns to hands, face, and other parts of body from hot bearings.

15.1.5 Place the crankcase in a vertical position with the face of the main bearing housing upward. Apply a lifting device to the main bearing end of the crankshaft. Lower the crankshaft into the crankcase until the main bearing seats in its bore inside the crankcase. Install the oil pump plunger over the crankshaft and with the oil pump body over the oil pump plunger, slightly rock the upper end of the crankshaft back and forth at right angles to its axis until the oil pump body seats inside the crankcase.

15.1.6 Place the other main bearing onto the crankshaft using the method described in 15.1.4. On motor driven compressors the spherical roller bearing is applied to this side of the shaft.

15.1.7 Install a NEW main bearing housing gasket (Pc. No. 591705), and place the main bearing housing in position, tap it lightly if necessary, and then, taking the necessary precaution not to damage the main bearing, apply cap screws and tighten uniformly. (See Section 14.26 for Torque Values).

15.1.8 Rotate the crankshaft to insure that main bearings turn freely. Tapping the bearing housing near the oil seal bore may relieve resistance to movement.

15.1.9 Place the crankcase in its normal upright position resting on its base.

NOTE: The crankshaft must rotate freely before continuing with the assembling procedure.

15.2 CRANKSHAFT OIL SEALS

Always install new crankshaft oil seals (Pc. No. 680008), when the crankshaft has been removed from the compressor. The seals should always be replaced if there is any indication of oil leakage.

15.2.1 Oil Seal Installation

Reference Figure 21

15.2.2 The oil seals must be assembled in the crankcase and main bearing housing with two lips facing inward (only one lip faces the atmospheric side). Install the oil seal without lubricant on the seal lips.

15.2.3 When installing an oil seal, care must be exercised to insure that the seal is not damaged by the keyway or shoulder of the crankshaft.

15.2.4 Prior to installing an oil seal on a shaft, the seal should be “stretched” by first installing it over a 3.562” (90.475 mm) preassembly cone. This will enable and help prevent
Figure 22 - Low and High Pressure Piston Rings

1.50" 7" Diameter
5.50/5.499" Diameter

See Detail "A"

Grind 16 MU in Max

8" 8"

See Detail "A"

0.50"

9" Diameter
7.750/7.749" Diameter

0.093"

250 MU in MAX
0.50"

250 MU in MAX
damage occurred when assembling over keyways and shoulders.

15.2.5 After “stretching” the seal, assemble the seal in place over the shaft by hand. Move the seal into position at the crankcase bore, being careful not to twist the inward facing seal lips so as to face outward. With the seal O.D. against the crankcase bore, place the tool over the crankshaft against the oil seal and tap the tool until the oil seal is flush with the outside machined surface.

15.3 CYLINDERS AND PISTON ASSEMBLY

15.3.1 Apply a liberal amount of oil to all mating parts before assembly.

15.3.2 The cylinders are first mounted to the crankcase using (2) new low pressure cylinder gaskets (Pc. No. 514630) and (1) one new high pressure cylinder gasket, (Pc. No. 514627). Aluminum pistons must be heated to 110° F (43.3° C) before inserting the wrist pin through the piston - connecting rod assembly. The rings are installed as shown in Figure 10. Make certain the piston ring gaps are not aligned. Using the proper ring compressor tool, lower the piston - connecting rod assembly into the cylinder.

Care must be taken when lowering the piston assembly into the cylinder so as not to damage the piston rings, cylinders and the crankpin of the crankshaft. See Figure 22 for low and high pressure ring compressor tools.

When placing the connecting rod caps in position for assembling, make certain that the lettering stenciled on the cap agrees with the stenciling on the rod as the rod and cap are machined as a matched set. Cover the crankpin with a film of oil before placing the connecting rod and the cap in place. Install new insert bearing set (Pc. No. 540589) in the rod and cap before assembling the crankshaft.

IMPORTANT: The connecting rod bolt and nut must be tightened according to the following procedure: Torque the castle nuts evenly to 100 ft.-lbs. (135.1 Nm.); then continue torquing the nuts until a new cotter pin (Pc. No. 522772), can be inserted through the slot in the nut and the drilled hole in the bolt.

CAUTION: DO NOT EXCEED 150 foot-pounds (202 Nm.) torque. Observe that the compressor crankshaft turns freely after all of the connecting rod bolts have been torqued and the piston doesn’t extend above the cylinder.

15.4 CYLINDER HEAD ASSEMBLY

15.4.1 Assemble the cylinder heads to the cylinders using new gaskets (Pc. No. 514651).

15.4.2 Install the inlet and discharge valves in the heads using new copper valve gaskets (Pc. No. 514644). Apply anti-seize compound to both sides of the gasket.

15.4.3 Install and torque the valve plugs to 300 ft.-lbs. (496.8 Nm.) maximum. Coat the valve plug threads with anti-seize compound.

15.4.4 Compressors must have copper sealing gaskets on the valve caps, unloader cap nuts and unloader bodies. Apply anti-seize compound to both sides of the copper gaskets (Pc. No. 592600 and Pc. No. 558371).

15.4.5 The NEW STANDARD unloader assembly is installed with components arranged as per Figure 18.

15.4.6 Torque the unloader body assembly and discharge valve caps to 200 ft.-lbs. (271.16 Nm.).

15.4.7 Connect the unloader tubing to the heads to complete the assembly.

16.0 OIL PUMP CARTRIDGE ASSEMBLY and SIDE COVERS

16.1 The oil pump cartridge is assembled as per Figure 4.

16.2 Install the oil pump cartridge into the oil pump body in the bottom of the crankcase.

16.3 It is important that the roll pin in the cartridge body fits inside the slot in the oil pump body.

16.4 Install a NEW oil pump strainer screen (Pc. No. 517745), into the oil strainer body (Pc. No. 540287), using retaining ring (Pc. No. 517744).

16.5 Install the oil pump strainer complete inside the oil pump body using a ½ x 4” hex head cap screw (Pc. No. 584610), and ¹/₂” lock nut (Pc. No. 580862).

16.6 Install (2) NEW side cover gaskets (Pc. No. 564866). Install the plain side covers using the ⁷/₁₆ x ⁷/₁₆” hex head cap screw (Pc. No. 587946). Install the side cover with the oil fill elbow, dipstick or oil level float gage using the ⁵/₁₆ x ¹⁷/₁₆” hex head cap screw (Pc. No. 15784). Take care not to bend the oil level float gage on compressors so equipped.
17.0 INTERCOOLER, AFTERCOOLER AND FAN ASSEMBLY

17.1 INSTALLATION OF AFTERCOOLER ASSEMBLY

17.1.1 Non Aftercooled Compressor Intercooler Assembly

17.1.2 Install new flange gasket (Pc. No. 514650) onto the low pressure cylinder head over the existing studs. Install risers (Pc. Nos. 590337 & 580335) to the low pressure head discharge using 1/2" nuts (Pc. No. 502365). Tighten the nuts finger tight.

17.1.3 Install the center header (Pc. No. 580336) to the high pressure head inlet using a new flange gasket (Pc. No. 514650) and 1/2" screws (Pc. No. 514281). Tighten finger tight.

17.1.4 Position an intercooler core (Pc. No. 581130) between the center header and a riser and secure together using new flange gaskets (Pc. No. 514650), 1/2" screws (Pc. No. 514281), and 1/2" lock washers (Pc. No. 514281). Tighten finger tight. Repeat this procedure for the other intercooler core.

17.1.5 Torque all connections to 50 ft.-lbs. (67.9 Nm.) beginning at the high pressure head/center header joint and working towards the low pressure head/riser joints.

17.1.6 Secure the bottom intercooler brackets to the crankcase using 1/2" screws (Pc. No. 584840).

17.1.7 Install relief valve (valves) into tapped hole (holes) in the center header and tighten.

17.2 INSTALLATION OF AFTERCOOLED COMPRESSOR INTERCOOLER COMPONENTS

17.2.1 Install new flange gasket (Pc. No. 514650) onto the low pressure cylinder head over the existing studs. Install risers (Pc. Nos. 651033 & 651034) to the low pressure head discharge using 1/2" nuts (Pc. No. 502365). Tighten the nuts finger tight.

17.2.2 Install the center header (Pc. No. 651032) to the high pressure head inlet using a new flange gasket (Pc. No. 514650) and 1/2" screws (Pc. No. 583810). Tighten finger tight.

17.2.3 Position an intercooler core (Pc. No. 651029) between the center header and a riser and secure together using new flange gaskets (Pc. No. 514650), 1/2" screws (Pc. No. 583510), and 1/2" lock washers (Pc. No. 514281). Tighten finger tight. Repeat this procedure for the other intercooler core.

17.2.4 Torque all connections to 50 ft.-lbs. (67.9 Nm.) beginning at the high pressure head/center header joint and working towards the low pressure head/riser joints.

17.2.5 Install relief valve into the tapped hole in the center header and tighten.

17.3 THERMOSTATICALLY CONTROLLED INTERCOOLER ASSEMBLY

17.3.1 Install a new seal (Pc. No. 653518) into the bottom bore of the Thermostat By-Pass Valve Housing (Pc. No. 653513). Install a new o-ring (Pc. No. 653927) into the counter bore in the top of the Thermostat By-Pass Valve Housing. Install a new thermostat (Pc. No. 653515) through the top of the bypass housing such that the large circular section passes through the seal and the flange rests inside the o-ring. Exercise care not to tear the seal or o-ring during the assembly process.

17.3.2 Place the high pressure inlet manifold onto the top of the Thermostat By-Pass Valve Housing and gasket and secure with 1/2" screws (Pc. No. 11760) and tighten to 20 ft.-lbs. (27.12 Nm.).

17.3.3 Coat the heater cartridge and mating bore in the purge valve with thermal joint compound M-07349-00. Install the heater into the purge valve, install the acorn nut onto the heater cartridge and torque to 35 inch-pounds.

17.3.4 Install a new flange gasket (Pc. No. 93839) into the rapid unloader seat in the bottom of the intercooler. Assemble the rapid unloader onto the gasket/intercooler flange and secure with 3/8" bolts and lock washers. Torque the bolts to 20 ft. lbs. (27.12 Nm.)

17.3.5 Assemble the Thermostat By-Pass Valve Housing/manifold to the top flange of the intercooler (Pc. No. 653512) using a new flange gasket (Pc. No. 514650) and 1/2" screws (Pc. No. 583810). Tighten finger tight.

17.3.6 Place a new flange gasket (Pc. No. 514650) over the studs on the low pressure heads. Assemble the intercooler By-Pass Manifold over the low pressure head studs and to the bottom of the Thermostat By-Pass Valve Housing using a new gasket (Pc. No. 653517), 3/8" screws (Pc. No. 584541) and 1/2" nuts (Pc. No. 502365). Tighten the 3/8" screws to 20 ft.-lbs. (27.12 Nm.). Assemble the By-Pass Manifold to the intercooler flange utilizing a new flange gasket (Pc. No. 514650). Tighten the remaining hardware finger tight.

17.3.7 Assemble the intercooler connector (Pc. No. 652637) to the remaining low pressure head studs. Assemble the
connector to the intercooler using a flange gasket (Pc. No. 514650) and ½” screws (Pc. No. 583810). Tighten finger tight.

17.3.8 With the intercooler assembly on the compressor, torque the remaining hardware to 50 ft.-lbs. (67.9 Nm.). Torque the manifold to high pressure head connection first, followed by the bypass housing to intercooler connection, the intercooler to manifold, connector to intercooler then finally the connections at the low pressure heads.

17.3.9 Connect the rapid unloader pilot air tube to the rapid unloader and the unloader fitting on the low pressure head.

17.3.10 Install a 75 psig pressure setting relief valve (Pc No. 654153) into the tapped hole in the bypass manifold and tighten.

17.3.11 Install new high temperature indicator (Pc. No. 654006) into the tapped hole on top of the high pressure inlet manifold.

17.4 ONE PIECE INTERCOOLER ASSEMBLY

17.4.1 Assemble the intercooler (Pc. No. 653078) to the high pressure head using a new flange gasket (Pc. No. 514650) and screws (Pc. No. 583810). Tighten finger tight.

17.4.2 Install new flange gaskets (Pc. No. 514650) over the studs of the low pressure heads.

17.4.3 Assemble the right and left connectors (Pc. No. 652637 and 652638) over the low pressure head studs. Fasten the connectors with nuts (Pc. No. 502365). Tighten finger tight.

17.4.4 Install new flange gaskets (Pc. No. 514650) between the connectors and intercooler inlet flanges and fasten with screws (Pc. No. 583810). Tighten finger tight.

17.4.5 Torque all connections to 50 ft.-lbs. (67.9 Nm.) beginning at the high pressure head/intercooler joint and working to the low pressure head/connector joints.

17.4.6 Install relief valve into the tapped hole in the center header and tighten.

17.5 INSTALLATION OF AFTERCOOLER COMPONENTS

17.5.1 Installation of Non By-Pass Aftercooler

17.5.2 Attach aftercooler brackets (Pc. No. 650793) to crankcase with ½” screws (Pc. No. 584840) (4 REQD).

17.5.3 Slide aftercooler core (Pc. No. 650792) into aftercooler brackets (Pc. No. 650793) through the side.

17.5.4 Fasten top of aftercooler (Pc. No. 650972) into aftercooler brackets (Pc. No. 650973) and bottom of intercooler assembly with ⅜ x 1½” screws (Pc. No. 581064) (4 REQD).

17.5.5 Fasten bottom of aftercooler to aftercooler brackets with ⅜ x 1¼” screws (Pc. No. 534357) (4 REQD), and ⅜” stop nuts (Pc. No. 589357) (4 REQD).

17.6 INSTALLATION OF HIGH PRESSURE DISCHARGE PIPE

17.6.1 Attach inlet side of high pressure discharge pipe (Pc. No. 651031) with NEW flange gasket (Pc. No. 514650) to high pressure discharge flange of high pressure cylinder with ½ x 1⅜” screws (Pc. No. 11760) (4 REQD).

17.6.2 Attach discharge side of high pressure discharge pipe (Pc. No. 651031) with NEW flange gasket (Pc. No. 514650) to top inlet flange connection of aftercooler (Pc. No. 650972) with ½ x 1½” screws (Pc. No. 584543) (4 REQD) and ½” lock washers (Pc. No. 514281) (4 REQD). When all parts are assembled, tighten all cap screws to 50 ft.-lbs. (67.9 Nm.) and ⅜” screws to 20 ft.-lbs. (27.12 Nm.).

17.6.3 Install J-1 Safety Valve (Pc. No. 558296-0180) into high pressure discharge pipe (Pc. No. 651031), if so equipped. TIGHTEN SECURELY.

17.7 INSTALLATION OF BY-PASS AFTERCOOLER

17.7.1 Attach aftercooler brackets (Pc. No. 650973) to crankcase with ½” screws (Pc. No. 584840).

17.7.2 Slide aftercooler core (Pc. No. 653765) into aftercooler brackets through the side.

17.7.3 Fasten the top of the aftercooler and bottom of the intercooler to the aftercooler brackets using ⅜” screws (Pc. No. 581064) and nuts (Pc. No. 589357). Tighten finger tight.

17.7.4 Fasten the bottom of the aftercooler to the aftercooler brackets using ⅜” screws (Pc. No. 534357) and nuts (Pc. No. 589357). Tighten finger tight.
17.7.5 Assemble the header (Pc. No. 653766) to the high pressure head using a new flange gasket (Pc. No. 514650) and 1/2" screws (Pc. No. 582810). The header should be mounted such that the 1/2" diameter hole is facing left (towards the aftercooler’s discharge side). Tighten finger tight. Install a safety valve (Pc. No. 558296-0180), into the header if so equipped.

17.7.6 Attach the discharge pipe (Pc. No. 653767) to the header using a new flange gasket (Pc. No. 514650) and screws (Pc. No. 579623). Tighten finger tight. Attach opposite end of the discharge pipe to the aftercooler inlet using a new flange gasket (Pc. No. 514650) and screws (Pc. No. 584544) with lock washers (Pc. No. 514281). Tighten finger tight.

17.7.7 Attach the bypass pipe (Pc. No. 653764) to the header (side with 1/2" hole) with a new flange gasket (Pc. No. 514650) and screws (Pc. No. 579623). Tighten finger tight. Attach the opposite end of the bypass pipe to the aftercooler using a new flange gasket (Pc. No. 514650), screws (Pc. No. 584544) and lock washers (Pc. No. 514281). Tighten finger tight.

17.7.8 Torque all 1/2" hardware to 50 ft.-lbs. (67.9 N.m.). Begin torquing the hardware at the high pressure head and work towards the aftercooler. Torque the 3/8" hardware to 20 ft.-lbs. (27.12 Nm.).

17.8 FAN HUB FITTING

17.8.1 The fan hub should have at least a 75% fit on the compressor crankshaft. Before heating the hub for mounting check the taper fit as follows.

17.8.2 Lightly cover the bore of the hub with a suitable blueing compound.

17.8.3 Snap the cold fan hub on the crankshaft. Remove the hub and inspect the blueing that has been transferred to the crankshaft. If at least 75% of the crankshaft shows traces of blueing the fit is satisfactory. If not the crankshaft taper must be dressed very lightly using 400 emery cloth. Repeat tests until the 75% minimum fit is achieved.

17.9 FAN HUB MOUNTING WITH HYDRAULIC REMOVAL FEATURE

17.9.1 Clean the fan hub bore and crankshaft with alcohol.

17.9.2 Trial mount the hub on the shaft and record a depth measurement from the end of the shaft to the hub face.

17.9.3 Heat the fan hub to 300° F (149° C) above the crankshaft temperature.

17.9.4 Quickly mount the hub to the shaft and snap it into position.

17.9.5 Measure the hub advance on the crankshaft. Proper advance is 0.045 to 0.055 inches. Allow to cool to room temperature.

17.9.6 Assemble nut on the end of the compressor crankshaft and torque to 500 ft.-lbs (670.9 Nm.). Torque set screws on the nut to 20 ft.-lbs (27.12 Nm.).

17.10 INSTALLATION OF FAN ASSEMBLY

17.10.1 Attach fan blades to fan hub with 3/8 x 2" hex head cap screws (Pc. 584542) and 3/8" lock nuts (Pc. 671337). Torque all 3/8" nuts to 30 ft.-lbs (40.68 Nm.).

17.10.2 Attach top of fan guard assembly to intercooler assembly center header with 3/8" x 1 1/2" hex head cap screws (Pc. No. 581064) (2 REQD), and 3/8" elastic stop nuts (Pc. No. 589357) (2 REQD).

17.10.3 Attach bottom of fan guard assembly to intercooler brackets or aftercooler brackets (Pc. No. 650973) with 3/8" x 1 1/4" hex head cap screws (Pc. No. 584541) (4 REQD) and 3/8" elastic stop nuts (Pc. No. 589357) (4 REQD). Torque hardware to 20 ft.-lbs. (27.12 Nm.).

17.11 FANS WITH ONE PIECE MOLDED FANS

17.11.1 Assemble the fan onto the fan hub assuring that the fan is fully seated against the hub.

17.11.2 Install six screws and lock washers (size depends on application). Torque the screws to the appropriate torque values as noted in Section 14.26.

17.12 INSTALLATION OF DRIVE MOTOR

Install compressor drive motor according to the locomotive builder’s specifications. Consult the locomotive builder’s representative for further assistance.
18.0 WEAR-IN and TESTS

18.1 Compressors which have been reconditioned and have undergone major repairs such as covered by the preceding instructions must be subjected to a reasonable wear-in period.

18.2 The compressor, after being properly and completely assembled with WABCO APPROVED AIR INLET FILTERS and with the crankcase filled the appropriate lubricating oil for the anticipated operating conditions, see paragraph 9.2, should be placed on a suitable test stand. This test stand should be equipped with a motor of sufficient horsepower (See General Specifications on page 48 & 49) preferably of the variable speed type, to which the compressor can be mechanically coupled.

18.3 During the entire breaking-in period, the air filters must be in position to prevent damage due to entrance of foreign particles.

Due to the temperatures developed during break-in, auxiliary fan cooling is to be provided with a fan capacity of approximately 4100 cu. ft./min. (116.1 cubic meters/min.) per minute at an average velocity of 2000 cu. ft./min. (656 cubic meters/min.).

18.4 With the compressor arranged on the test stand, make the connection from the compressor discharge port to the pressure reservoir. With the globe valve open and the \(\frac{1}{16} \)" (6.746mm) orifice disc (Pc. No. 520439), in the orifice holder, operate the compressor according to the wear in schedule shown in item 18.5.

18.5 WEAR-IN SCHEDULE
Reference the Wear-In Schedule on Page 50

18.6 The oil pressure should be checked at frequent intervals during the test run and must never be less than 15 psig (103.42 kPa) at any of the above test speeds. Install a test gage in the tapped hole provided in the oil pressure indicator body or flange if so equipped.

18.7 Remove test gage at completion of tests and replace proper pipe plug.

NOTE: The test gage will indicate the actual oil pressure as well as check the accuracy of the oil pressure indicator. If the indicator stem fails to extend approximately \(\frac{3}{4} \)" (19.05 mm) beyond the cap at an oil pressure of 15 psig, (103.42 kPa), shims \(\frac{1}{8} \)" thick (1.5875 mm) (Pc. No. 562559), and \(\frac{1}{32} \)" thick (0.7937 mm) (Pc. No. 562560), may be added or removed as required from between the indicator piston and spring.

18.8 If any parts such as pistons, cylinders, rings, wrist pins, connecting rods or bearings are replaced, all tests must be repeated.
19.0 COMPRESSOR CAPACITY TEST
Reference Figure 23

19.1 After the compressor is completely reassembled, it must be operated again at maximum speed and pressure for a period of not less than one-half hour against 100 psig (689.47 kPa) to regain its normal operating temperature.

19.2 The capacity test should then be made in accordance with the arrangement for testing as shown.

19.3 The 17/64" diameter orifice (6.7468 mm) as indicated on for each compressor must be in the orifice holder for the capacity test.

19.4 Operate the compressor at 400 rpm or higher, then close the globe valve. Observe pressure on the reservoir gage. After the pressure is balanced, it should be compared with the pressure at the respective speed as shown on the speed versus pressure curve shown in Figures 24 to 27.

19.5 EXHAUSTER OR COMBINATION COMPRESSOR-EXHAUSTER TESTS

19.5.1 Complete test data is available upon request from the Compressor Engineering Department of the Wabtec Corporation.

20.0 INSTALLATION AND ALIGNMENT OF COMPRESSOR WITH DIESEL ENGINE

20.1 Installation of a new compressor or one being installed after overhauling requires careful consideration as regards proper alignment with the diesel engine when direct mechanical drive is involved. Regardless of the effort being made in properly repairing or rebuilding a compressor and the good workmanship applied, it cannot be expected to give satisfactory and reasonably long service life if not properly aligned and coupled to the diesel engine drive shaft. Use proper lifting mechanism capable of handling a minimum of 3000 lbs. (1360.8 kilograms) during this installation.

20.2 The alignment should be checked with a dial indicator in order to insure proper coupling.

20.3 For detailed procedure and installation values when installing the coupling, reference should be made to the locomotive builders instruction manual for the compressor drive system.

21.0 INSTALLATION of MOTOR DRIVEN COMPRESSOR

21.1 Install the compressor drive motor according to the locomotive builder's specifications. Electrical hookups must be made to the locomotive builders recommendations or serious damage may occur to the motor. Consult the locomotive builder’s representative for further assistance.

22.0 PREPARATION OF COMPRESSORS FOR DEAD STORAGE

22.1 To prepare compressor for dead storage, the following procedure is recommended.

22.2 With the compressor stopped, remove the compressor inlet filters from the inlet flange of each of the low pressure cylinders.

22.3 Start the compressor and run at approximately 500 RPM.

22.4 WARNING: An explosion can occur if the rust prevention oil is introduced into the compressor unit too rapidly. To minimize the possibility of personal injury from such an event, use only an oil container having a nozzle (outlet) diameter of 0.25 inches.

22.5 While the compressor is hot and running, slowly pour approximately 2 ounces of anti-rust lubricant into each of the low pressure cylinder head inlet flanges.

22.6 Stop the compressor.

22.7 Seal off the compressor inlet filter openings and high pressure discharge opening.
Figure 23 - Compressor Capacity Test Arrangement

- From Compressor Discharge
- 2.00” (50.8 mm) Pipe
- 0.50” (12.7 mm) Drain Cock
 Pc. No. 571082
- Air Pressure Gage
 Pc. No. 88882
- E-7-C Safety Valve Setting:
 160 psig (11.24 kgs/sqcm)
- Orifice Holder
 Pc. No. 58335
- 0.265” (6.731 mm) Orifice
 Pc. No. 520439
- GLOBE VALVE

Dimensions:
- 1.5” (38.1 mm) Pipe
- 24” Minimum (609.6 mm)
- 24” Maximum (609.6 mm)

Page 43
February, 2017
NOTE: DATA BASED ON FOLLOWING:

1. \(\frac{17}{64}'' \) (6.75 MM) DIAMETER ORIFICE WITH SQUARE EDGES, BORED THROUGH A 0.062'' (1.59 MM) THICK PLATE.
2. VOLUMETRIC EFFICIENCY OF 80% FOR NEW OR REPAIRED & 64% FOR CONDEMNING LIMIT.
3. RESERVOIR TEMPERATURE: 80° F (26.7° C)
4. AMBIENT TEMPERATURE: 70° F (21.1° C)
5. ATMOSPHERIC PRESSURE: 14.7 PSIG (101 KPA)
6. VARIATION FROM STATED CONDITIONS WILL CAUSE VARIATION FROM THE GIVEN PRESSURES.
7. FOR HIGHER ALTITUDES SEE TABLE ON TC-11133-A

Figure 24 - 3CD Type Air Compressors
Limiting Pressures vs. Speed Sea Level Conditions
3CD TYPE AIR COMPRESSORS

Pressures (psig) to be Maintained at Various Elevations Above Sea Level

<table>
<thead>
<tr>
<th>RPM</th>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>44</td>
<td>42</td>
<td>41</td>
<td>39</td>
<td>38</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>300</td>
<td>55</td>
<td>53</td>
<td>51</td>
<td>49</td>
<td>47</td>
<td>45</td>
<td>44</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>400</td>
<td>78</td>
<td>75</td>
<td>72</td>
<td>69</td>
<td>67</td>
<td>64</td>
<td>62</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>500</td>
<td>99</td>
<td>95</td>
<td>91</td>
<td>88</td>
<td>85</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
</tr>
<tr>
<td>600</td>
<td>120</td>
<td>115</td>
<td>111</td>
<td>107</td>
<td>103</td>
<td>99</td>
<td>96</td>
<td>93</td>
<td>89</td>
</tr>
</tbody>
</table>

Pressures (kPa) to be Maintained at Various Elevations (meters) Above Sea Level

<table>
<thead>
<tr>
<th>RPM</th>
<th>0</th>
<th>304.8</th>
<th>609.5</th>
<th>914.4</th>
<th>1219.2</th>
<th>1524</th>
<th>1828.8</th>
<th>2133.6</th>
<th>2438.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>303</td>
<td>290</td>
<td>283</td>
<td>269</td>
<td>262</td>
<td>248</td>
<td>241</td>
<td>234</td>
<td>228</td>
</tr>
<tr>
<td>300</td>
<td>379</td>
<td>365</td>
<td>352</td>
<td>339</td>
<td>324</td>
<td>310</td>
<td>303</td>
<td>290</td>
<td>283</td>
</tr>
<tr>
<td>400</td>
<td>538</td>
<td>517</td>
<td>496</td>
<td>476</td>
<td>462</td>
<td>441</td>
<td>428</td>
<td>414</td>
<td>400</td>
</tr>
<tr>
<td>500</td>
<td>683</td>
<td>655</td>
<td>627</td>
<td>607</td>
<td>586</td>
<td>565</td>
<td>545</td>
<td>524</td>
<td>510</td>
</tr>
<tr>
<td>600</td>
<td>827</td>
<td>793</td>
<td>765</td>
<td>738</td>
<td>70</td>
<td>683</td>
<td>662</td>
<td>641</td>
<td>614</td>
</tr>
</tbody>
</table>

Condemning Limits

<table>
<thead>
<tr>
<th>RPM</th>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>32</td>
<td>31</td>
<td>30</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>300</td>
<td>41</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>400</td>
<td>53</td>
<td>57</td>
<td>55</td>
<td>53</td>
<td>51</td>
<td>49</td>
<td>47</td>
<td>45</td>
<td>44</td>
</tr>
<tr>
<td>500</td>
<td>76</td>
<td>73</td>
<td>70</td>
<td>68</td>
<td>65</td>
<td>63</td>
<td>61</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>600</td>
<td>93</td>
<td>89</td>
<td>86</td>
<td>83</td>
<td>80</td>
<td>77</td>
<td>74</td>
<td>72</td>
<td>69</td>
</tr>
</tbody>
</table>

Figure 25 - 3CD Type Air Compressors
Limiting Pressures vs. Speed Elevations Above Sea Level
NOTE: DATA BASED ON FOLLOWING:

1. 17/64" (6.75 MM) DIAMETER ORIFICE WITH SQUARE EDGES, BORED THROUGH A 0.062" (1.59 MM) THICK PLATE.
2. VOLUMETRIC EFFICIENCY OF 80% FOR NEW OR REPAIRED & 64% FOR CONDEMNING LIMIT.
3. RESERVOIR TEMPERATURE: 80° F (26.7° C)
4. AMBIENT TEMPERATURE: 70° F (21.1° C)
5. ATMOSPHERIC PRESSURE: 14.7 PSIG (101 KPA)
6. VARIATION FROM STATED CONDITIONS WILL CAUSE VARIATION FROM THE GIVEN PRESSURES.
7. FOR HIGHER ALTITUDES SEE TABLE ON TC-11134-A

<table>
<thead>
<tr>
<th>COMPRESSOR SPEED - RPM</th>
<th>Limiting Pressure PSIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>350</td>
<td>40</td>
</tr>
<tr>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>450</td>
<td>60</td>
</tr>
<tr>
<td>500</td>
<td>70</td>
</tr>
<tr>
<td>550</td>
<td>80</td>
</tr>
<tr>
<td>600</td>
<td>90</td>
</tr>
</tbody>
</table>

Figure 26 - 3CDC Type Air Compressors
Limiting Pressures vs. Speed Sea Level Conditions
3CDC TYPE AIR COMPRESSORS

Pressures (psig) to be Maintained at Various Elevations Above Sea Level

<table>
<thead>
<tr>
<th>RPM</th>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>34</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>300</td>
<td>42</td>
<td>40</td>
<td>39</td>
<td>38</td>
<td>36</td>
<td>35</td>
<td>33</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>400</td>
<td>60</td>
<td>58</td>
<td>55</td>
<td>53</td>
<td>51</td>
<td>49</td>
<td>47</td>
<td>44</td>
<td>41</td>
</tr>
<tr>
<td>500</td>
<td>78</td>
<td>75</td>
<td>72</td>
<td>69</td>
<td>67</td>
<td>64</td>
<td>62</td>
<td>58</td>
<td>53</td>
</tr>
<tr>
<td>600</td>
<td>96</td>
<td>92</td>
<td>89</td>
<td>85</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>71</td>
<td>65</td>
</tr>
</tbody>
</table>

Condemning Limits

<table>
<thead>
<tr>
<th>RPM</th>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>300</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>400</td>
<td>45</td>
<td>43</td>
<td>42</td>
<td>40</td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>500</td>
<td>60</td>
<td>58</td>
<td>55</td>
<td>53</td>
<td>51</td>
<td>49</td>
<td>47</td>
<td>44</td>
<td>41</td>
</tr>
<tr>
<td>600</td>
<td>73</td>
<td>70</td>
<td>67</td>
<td>65</td>
<td>62</td>
<td>60</td>
<td>58</td>
<td>54</td>
<td>50</td>
</tr>
</tbody>
</table>

Pressures (kPa) to be Maintained at Various Elevations (meters) Above Sea Level

<table>
<thead>
<tr>
<th>RPM</th>
<th>0</th>
<th>304.8</th>
<th>609.5</th>
<th>914.4</th>
<th>1219.2</th>
<th>1524</th>
<th>1828.8</th>
<th>2133.6</th>
<th>2438.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>234</td>
<td>228</td>
<td>214</td>
<td>207</td>
<td>200</td>
<td>193</td>
<td>186</td>
<td>172</td>
<td>159</td>
</tr>
<tr>
<td>300</td>
<td>290</td>
<td>276</td>
<td>269</td>
<td>255</td>
<td>248</td>
<td>231</td>
<td>228</td>
<td>214</td>
<td>200</td>
</tr>
<tr>
<td>400</td>
<td>414</td>
<td>400</td>
<td>379</td>
<td>365</td>
<td>352</td>
<td>338</td>
<td>324</td>
<td>303</td>
<td>283</td>
</tr>
<tr>
<td>500</td>
<td>583</td>
<td>517</td>
<td>496</td>
<td>476</td>
<td>462</td>
<td>441</td>
<td>428</td>
<td>400</td>
<td>365</td>
</tr>
<tr>
<td>600</td>
<td>662</td>
<td>634</td>
<td>614</td>
<td>586</td>
<td>565</td>
<td>545</td>
<td>524</td>
<td>490</td>
<td>448</td>
</tr>
</tbody>
</table>

Figure 27 - 3CDC Type Air Compressors

Limiting Pressures vs. Speed Elevations Above Sea Level
<table>
<thead>
<tr>
<th>Component Description</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Pressure Cylinder:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>7.754 Max</td>
<td>196.951 Max</td>
</tr>
<tr>
<td>Length</td>
<td>12.3135 Min</td>
<td>312.7629 Min</td>
</tr>
<tr>
<td>High Pressure Cylinder:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>5.504 Max</td>
<td>139.801 Max</td>
</tr>
<tr>
<td>Length</td>
<td>11.189 Min</td>
<td>284.2006 Min</td>
</tr>
<tr>
<td>Low Pressure & Exhauster Aluminum Pistons:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>7.740 Min</td>
<td>196.596 Min</td>
</tr>
<tr>
<td>Compressor Ring Groove Width</td>
<td>0.1915 Max</td>
<td>4.8641 Max</td>
</tr>
<tr>
<td>Oil Ring Groove Width</td>
<td>0.2535 Max</td>
<td>6.4399 Max</td>
</tr>
<tr>
<td>Wrist Pin Bushing Diameter</td>
<td>1.7565 Max</td>
<td>44.6151 Max</td>
</tr>
<tr>
<td>Wrist Pin Diameter</td>
<td>1.7507 Min</td>
<td>44.4678 Min</td>
</tr>
<tr>
<td>Connecting Rod:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin Bore with Inserts</td>
<td>3.6308 Max</td>
<td>92.2223 Max</td>
</tr>
<tr>
<td>Wrist Bore Brushed</td>
<td>1.7565 Max</td>
<td>44.6151 Max</td>
</tr>
<tr>
<td></td>
<td>1.7507 Min</td>
<td>44.4678 Min</td>
</tr>
<tr>
<td>Main Bearings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bore Diameter</td>
<td>7.4835 Max</td>
<td>190.0809 Max</td>
</tr>
<tr>
<td>Crankshaft:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Bearing Journal</td>
<td>3.5433 Min</td>
<td>89.90 Min</td>
</tr>
<tr>
<td>End Play</td>
<td>0.060 Max</td>
<td>1.524 Max</td>
</tr>
<tr>
<td></td>
<td>0.015 Min</td>
<td>0.981 Min</td>
</tr>
<tr>
<td>Crankpin Diameter</td>
<td>3.621 Min</td>
<td>91.9734 Min</td>
</tr>
<tr>
<td>Oil Pump Journal Diameter</td>
<td>4.373 Min</td>
<td>111.0742 Min</td>
</tr>
<tr>
<td>Oil Pump:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankcase Oil Pump Body Bore Diameter</td>
<td>2.2525 Max</td>
<td>57.2135 Max</td>
</tr>
<tr>
<td>Oil Pump Body Diameter</td>
<td>2.2465 Min</td>
<td>57.0611 Min</td>
</tr>
<tr>
<td>Oil Pump Plunger Diameter</td>
<td>1.062 Max</td>
<td>26.9748 Max</td>
</tr>
<tr>
<td>Oil Pump Plunger Bore Diameter</td>
<td>4.378 Max</td>
<td>11.2012 Max</td>
</tr>
<tr>
<td>Perpendicularity of Oil Pump Plunger Large Bore to Plunger Diameter</td>
<td>0.002</td>
<td>0.0508</td>
</tr>
</tbody>
</table>
TABLE “A” - Continued
3CD Type Air Compressors, Exhausters & Combination Compressor-Exhauster

<table>
<thead>
<tr>
<th>Component</th>
<th>Condemning Limit</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INCHES</td>
<td>MILLIMETERS</td>
<td></td>
</tr>
<tr>
<td>Oil Pressure Indicator:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston Stem Diameter</td>
<td>0.239 Min</td>
<td>6.0706 Min</td>
<td></td>
</tr>
<tr>
<td>Body Bore Piston Diameter</td>
<td>0.990 Min</td>
<td>25.146 Min</td>
<td></td>
</tr>
<tr>
<td>Cap Nut Bore Diameter</td>
<td>0.995 Max</td>
<td>25.273 Max</td>
<td></td>
</tr>
<tr>
<td>Cap Nut Bore Diameter</td>
<td>0.243</td>
<td>6.1722</td>
<td></td>
</tr>
<tr>
<td>Unloaders:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unloader Valve Diameter</td>
<td>1.370 Min</td>
<td>34.798 Min</td>
<td></td>
</tr>
<tr>
<td>Unloader Valve Bushing Diameter</td>
<td>1.377 Max</td>
<td>34.9758 Max</td>
<td></td>
</tr>
<tr>
<td>Intercooler Pressure Seal Valve Diameter</td>
<td>0.869 Min</td>
<td>22.0726 Min</td>
<td></td>
</tr>
<tr>
<td>Intercooler Pressure Seal Bore Diameter</td>
<td>0.878 Max</td>
<td>22.3012 Max</td>
<td></td>
</tr>
<tr>
<td>Vacuum Maintaining Valve:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bore Diameter</td>
<td>1.2485 Max</td>
<td>31.7119 Max</td>
<td></td>
</tr>
<tr>
<td>Piston Diameter</td>
<td>1.2466 Min</td>
<td>31.6636 Min</td>
<td></td>
</tr>
</tbody>
</table>

TABLE “B”
Name Plate Status Information

<table>
<thead>
<tr>
<th>Repair Status Oversize or Undersize</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) “W” (White)</td>
<td>0.010</td>
</tr>
<tr>
<td>b) “Y” (Yellow)</td>
<td>0.020</td>
</tr>
</tbody>
</table>

NOTE: Letters to be stamped on name plate following serial number indicating repair status or parts.
GENERAL SPECIFICATIONS

3CD and 3CDC Type Air Compressors

<table>
<thead>
<tr>
<th>Metric</th>
<th>3CD Type</th>
<th>3CDC Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Speed</td>
<td>1000 RPM</td>
<td>1100 RPM</td>
</tr>
<tr>
<td>Displacement at Rated Speed</td>
<td>307 CFM (8694.24 liters/min)</td>
<td>247.5 CFM (7009.2 CFM)</td>
</tr>
<tr>
<td>Low Pressure Cylinder, Number & Diameter</td>
<td>(2) 7.75” Dia. (196.85 mm)</td>
<td>(2) 7.75” Dia. (196.85 mm)</td>
</tr>
<tr>
<td>High Pressure Cylinder, Number & Diameter</td>
<td>(1) 5.50” Dia. (139.70 mm)</td>
<td>(1) 5.50” Dia. (139.70 mm)</td>
</tr>
<tr>
<td>Number of Compression Rings per Piston</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>Number of Oil Rings per Piston</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>Stroke</td>
<td>5 5/6” (142.875 mm)</td>
<td>4 1/8” (104.775 mm)</td>
</tr>
<tr>
<td>Number of Main Bearings</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>Type of Main Bearings</td>
<td>Conrad Type Single Row Ball</td>
<td>Conrad Type Single Row Ball</td>
</tr>
<tr>
<td>Crankpin Journal Lubrication</td>
<td>Pressure</td>
<td>Pressure</td>
</tr>
<tr>
<td>Wrist Pin Lubrication</td>
<td>Pressure</td>
<td>Pressure</td>
</tr>
<tr>
<td>Oil Pump Type</td>
<td>Fixed displacement plunger</td>
<td>Fixed displacement plunger</td>
</tr>
<tr>
<td>Oil Capacity - Quarts (Liters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Crankcase</td>
<td>65 Quarts (61.5 Liters)</td>
<td>65 Quarts (61.5 Liters)</td>
</tr>
<tr>
<td>Small Crankcase</td>
<td>13 Quarts (12.3 Liters)</td>
<td>13 Quarts (12.3 Liters)</td>
</tr>
<tr>
<td>Compressor BHP @ Maximum Rated Speed & 140 psig (20.305 kPa) less Crankshaft Mounted Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Valve Heads</td>
<td>80</td>
<td>63</td>
</tr>
<tr>
<td>(4) Valve Heads</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Cooling</td>
<td>Fan (Depending on Applications)</td>
<td>Fan (Depending on Applications)</td>
</tr>
<tr>
<td>Intercooler Pressure</td>
<td>45 psig (6.526 kPa)</td>
<td>43 (6.236 kPa)</td>
</tr>
<tr>
<td>Oil Pressure (Minimum)</td>
<td>15 psig (2.175 kPa)</td>
<td>15 psig (2.175 kPa)</td>
</tr>
<tr>
<td>Valve Type</td>
<td>Plate or Disc-Spring Loaded</td>
<td>Plate or Disc-Spring Loaded</td>
</tr>
<tr>
<td>Dry Weight:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with Small Crankcase</td>
<td>1162 lbs. (527.05 kgs.)</td>
<td>1162 lbs. (527.05 kgs.)</td>
</tr>
<tr>
<td>with Large Crankcase</td>
<td>1397 lbs. (633.67 kgs.)</td>
<td>1397 lbs. (633.67 kgs.)</td>
</tr>
<tr>
<td>with Small Crankcase & Aftercooler</td>
<td>---</td>
<td>1360 lbs. (616.89 kgs.)</td>
</tr>
<tr>
<td>with Large Crankcase & Aftercooler</td>
<td>---</td>
<td>1640 lbs. (743.86 kgs.)</td>
</tr>
<tr>
<td>with Large Crankcase & Aftercooler By-Pass</td>
<td>---</td>
<td>1735 lbs. (786.95 kgs.)</td>
</tr>
</tbody>
</table>

* The direct electric motor driven compressor uses one conrad style ball bearing and one spherical roller type bearing.
| **GENERAL SPECIFICATIONS**
3CDCU Type Compressor - Exhausters and 3CDCV Type Exhauster | **3CDCU Type** | **3CDCV Type** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Speed</td>
<td>1000 RPM</td>
<td>1100 RPM</td>
</tr>
</tbody>
</table>
| **Displacement at Rated Speed**
- Compressor
- Exhauster | 62.3 CFM (1764.3 L/min)
247.5 CFM (7009.2 L/min) | 309.88 CFM (8775.81 L/min)
----- |
| **Vacuum Cylinder, Number & Diameter** | (2) 7.75” Dia.
(196.85 mm) | (2) 7.775” Dia. (196.85 mm)
(1) 5.5” Dia. (139.70 mm) |
| **Compressor Cylinder, Number & Diameter** | (1) 5.50” Dia.
(139.70 mm) | ----- |
| **Number of Compression Rings per Piston** | (2) | (2) |
| **Number of Oil Rings per Piston** | (2) | (2) |
| **Stroke** | 4.125” (104.775 mm) | 4.125” (104.775 mm) |
| **Number of Main Bearings** | (2) | (2) |
| **Type of Main Bearings** | Conrad Type Single Row Ball | Conrad Type Single Row Ball* |
| **Crankpin Journal Lubrication** | Pressure | Pressure |
| **Wrist Pin Lubrication** | Pressure | Pressure |
| **Oil Pump Type** | Fixed displacement plunger replaceable cartridge | Fixed displacement plunger replaceable cartridge |
| **Oil Capacity**
- Quarts (Liters)
- Large Crankcase
- Small Crankcase | 65 Quarts (61.6 Liters)
13 Quarts (12.3 Liters) | 65 Quarts (61.6 Liters)
13 Quarts (12.3 Liters) |
| **Compressor - Exhauster, BHP @ Rated Speed & 0” Hg Vacuum Compressor at 80 psig (551.58 kPa)** | 24 | ----- |
| **Exhauster BHP @ rated Speed & 0” Hg Vacuum** | ----- | 19 |
| **Cooling** | Fan (Depending on Applications) | Fan (Depending on Applications) |
| **Oil Pressure (Minimum)** | 15 psig (2.175 kPa) | 15 psig (2.175 kPa) |
| **Valve Type** | Plate or Disc-Spring Loaded | Plate or Disc-Spring Loaded |
| **Dry Weight:**
- with Small Crankcase
- with Large Crankcase | 1025 lbs. (464.94 kgs.)
1295 lbs. (587.41 kgs.) | 1025 lbs. (464.94 kgs.)
1295 lbs. (587.41 kgs.) |

* The 3CMDCVL Exhauster uses one conrad type single row ball bearing and one spherical roller main bearing.
WEAR IN SCHEDULE

<table>
<thead>
<tr>
<th>RPM</th>
<th>TIME (Hours)</th>
<th>PRESSURE PSI</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td></td>
<td>Atmosphere</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1½</td>
<td>140 (965.51 kPa)</td>
<td>Soap flanges & discharge valve cap nuts</td>
</tr>
<tr>
<td>1000</td>
<td>1/2</td>
<td>140 - 125 (965.51 kPa - 862.06 kPa)</td>
<td>Check to see if compressor loads & unloads</td>
</tr>
<tr>
<td>1000</td>
<td>1½</td>
<td>140 (965.51 kPa)</td>
<td>Continuous duty - volumetric efficiency test conducted in last half hour</td>
</tr>
</tbody>
</table>

WARNING: STATED MINIMUM AND MAXIMUM ARE NOT TO BE EXCEEDED OR COMPRESSOR DAMAGE AND PERSONAL INJURY MAY RESULT!
Troubleshooting Guide

PROBLEMS

<table>
<thead>
<tr>
<th>Compressor won't unload</th>
<th>Low oil pressure</th>
<th>Oil comes out crankcase breather</th>
<th>Excessive carboning of valves</th>
<th>Oil seal leak</th>
<th>Compressor passes excessive oil</th>
<th>Intercooler relief valve pops</th>
<th>Intercooler pressure too high / too low</th>
<th>30 seconds of unloading</th>
<th>Air comes out of the unloader body vent when the compressor is loaded</th>
<th>Intercooler pressure increases while the compressor is off with no unloaded air applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor makes knocking noise</td>
<td></td>
</tr>
<tr>
<td>Oil strainer screen dirty</td>
<td></td>
</tr>
<tr>
<td>Intercooler pressure too high / too low</td>
<td>Intercooler pressure is not less than 5 psig</td>
<td>Intercooler pressure increases while the compressor is off with no unloaded air applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POSSIBLE CAUSE

<table>
<thead>
<tr>
<th>Compressor won't unload</th>
<th>Low oil pressure</th>
<th>Oil comes out crankcase breather</th>
<th>Excessive carboning of valves</th>
<th>Oil seal leak</th>
<th>Compressor passes excessive oil</th>
<th>Intercooler relief valve pops</th>
<th>Intercooler pressure too high / too low</th>
<th>30 seconds of unloading</th>
<th>Air comes out of the unloader body vent when the compressor is loaded</th>
<th>Intercooler pressure increases while the compressor is off with no unloaded air applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Defective unloader line, obstructed, insufficient unloader line pressure
- Unloader valve ring or o-ring defective, excessive unloader valve clearance
- Excessive wear of: insert bearings, shaft, wrist pin bushing, or oil pump plunger
- Foreign material in oil pump cartridge check valves
- Wrong finish on cylinder walls, cylinder worn
- Valve not seated - defective copper gasket, valve plug not fully engaged
- Leaking intercooler, gaskets, intercooler drains open
- Oil strainer screen dirty
- Dirt/obstruction in oil indicator line
- Pressure gage defective
- Broken valve
- Dirty or defective inlet air filters
- Wrong oil
- Low oil level
- Worn or broken piston rings
- Defective crankcase breather
- Defective high pressure inlet valves
- Defective low pressure valves
- Defective high pressure discharge valves
- Intercooler pressure seal valve not seated
- Dirty or obstructed intercoolers